Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High-Aspect-Ratio Through Silicon Vias for High-Frequency Application Fabricated by Magnetic Assembly of Gold-Coated Nickel Wires
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-4867-0391
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0003-3452-6361
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0002-8264-3231
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
Show others and affiliations
2015 (English)In: IEEE Transactions on Components, Packaging, and Manufacturing Technology, ISSN 2156-3950, E-ISSN 2156-3985, Vol. 5, no 1, 21-27 p.Article in journal (Refereed) Published
Abstract [en]

In this paper, we demonstrate a novel manufacturing technology for high-aspect-ratio vertical interconnects for high-frequency applications. This novel approach is based on magnetic self-assembly of prefabricated nickel wires that are subsequently insulated with a thermosetting polymer. The high-frequency performance of the through silicon vias (TSVs) is enhanced by depositing a gold layer on the outer surface of the nickel wires and by reducing capacitive parasitics through a low-k polymer liner. As compared with conventional TSV designs, this novel concept offers a more compact design and a simpler, potentially more cost-effective manufacturing process. Moreover, this fabrication concept is very versatile and adaptable to many different applications, such as interposer, micro electromechanical systems, or millimeter wave applications. For evaluation purposes, coplanar waveguides with incorporated TSV interconnections were fabricated and characterized. The experimental results reveal a high bandwidth from dc to 86 GHz and an insertion loss of <0.53 dB per single TSV interconnection for frequencies up to 75 GHz.

Place, publisher, year, edition, pages
IEEE Press, 2015. Vol. 5, no 1, 21-27 p.
Keyword [en]
RF signal transmission, skin effect, through silicon via (TSV), vertical interconnection, wafer scale integration
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-160401DOI: 10.1109/TCPMT.2014.2369236ISI: 000348123200004Scopus ID: 2-s2.0-84921411485OAI: oai:DiVA.org:kth-160401DiVA: diva2:790438
Funder
Swedish Research Council, 277879
Note

QC 20150224

Available from: 2015-02-24 Created: 2015-02-19 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Integration and Fabrication Techniques for 3D Micro- and Nanodevices
Open this publication in new window or tab >>Integration and Fabrication Techniques for 3D Micro- and Nanodevices
2012 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The development of micro and nano-electromechanical systems (MEMS and NEMS) with entirely new or improved functionalities is typically based on novel or improved designs, materials and fabrication methods. However, today’s micro- and nano-fabrication is restrained by manufacturing paradigms that have been established by the integrated circuit (IC) industry over the past few decades. The exclusive use of IC manufacturing technologies leads to limited material choices, limited design flexibility and consequently to sub-optimal MEMS and NEMS devices. The work presented in this thesis breaks new ground with a multitude of novel approaches for the integration of non-standard materials that enable the fabrication of 3D micro and nanoelectromechanical systems. The objective of this thesis is to highlight methods that make use of non-standard materials with superior characteristics or methods that use standard materials and fabrication techniques in a novel context. The overall goal is to propose suitable and cost-efficient fabrication and integration methods, which can easily be made available to the industry.

The first part of the thesis deals with the integration of bulk wire materials. A novel approach for the integration of at least partly ferromagnetic bulk wire materials has been implemented for the fabrication of high aspect ratio through silicon vias. Standard wire bonding technology, a very mature back-end technology, has been adapted for yet another through silicon via fabrication method and applications including liquid and vacuum packaging as well as microactuators based on shape memory alloy wires. As this thesis reveals, wire bonding, as a versatile and highly efficient technology, can be utilized for applications far beyond traditional interconnections in electronics packaging.

The second part presents two approaches for the 3D heterogeneous integration based on layer transfer. Highly efficient monocrystalline silicon/ germanium is integrated on wafer-level for the fabrication of uncooled thermal image sensors and monolayer-graphene is integrated on chip-level for the use in diaphragm-based pressure sensors.

The last part introduces a novel additive fabrication method for layer-bylayer printing of 3D silicon micro- and nano-structures. This method combines existing technologies, including focused ion beam implantation and chemical vapor deposition of silicon, in order to establish a high-resolution fabrication process that is related to popular 3D printing techniques.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2012. xv, 91 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2013:001
Keyword
Microelectromechanical systems, MEMS, Nanoelectromechanical systems, NEMS, silicon, wafer-level, chip-level, through silicon via, TSV, packaging, 3D packaging, vacuum packaging, liquid encapsulation, integration, heterogeneous integration, wafer bonding, microactuators, shape memory alloy, SMA, wire bonding, magnetic assembly, self-assembly, 3D, 3D printing, focused ion beam, FIB
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-107125 (URN)978-91-7501-583-5 (ISBN)
Public defence
2013-01-18, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20121207

Available from: 2012-12-07 Created: 2012-12-06 Last updated: 2016-08-11Bibliographically approved
2. Novel RF MEMS Devices Enabled by Three-Dimensional Micromachining
Open this publication in new window or tab >>Novel RF MEMS Devices Enabled by Three-Dimensional Micromachining
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis presents novel radio frequency microelectromechanical (RF MEMS) circuits based on the three-dimensional (3-D) micromachined coplanar transmission lines whose geometry is re-configured by integrated microelectromechanical actuators. Two types of novel RF MEMS devices are proposed. The first is a concept of MEMS capacitors tuneable in multiple discrete and well-defined steps, implemented by in-plane moving of the ground side-walls of a 3-D micromachined coplanar waveguide transmission line. The MEMS actuators are completely embedded in the ground layer of the transmission line, and fabricated using a single-mask silicon-on-insulator (SOI) RF MEMS fabrication process. The resulting device achieves low insertion loss, a very high quality factor, high reliability, high linearity and high self actuation robustness. The second type introduces two novel concepts of area efficient, ultra-wideband, MEMS-reconfigurable coupled line directional couplers, whose coupling is tuned by mechanically changing the geometry of 3-D micromachined coupled transmission lines, utilizing integrated MEMS electrostatic actuators. The coupling is achieved by tuning both the ground and the signal line coupling, obtaining a large tuneable coupling ratio while maintaining an excellent impedance match, along with high isolation and a very high directivity over a very large bandwidth. This thesis also presents for the first time on RF nonlinearity analysis of complex multi-device RF MEMS circuits. Closed-form analytical formulas for the IIP3 of MEMS multi-device circuit concepts are derived. A nonlinearity analysis, based on these formulas and on  measured device parameters, is performed for different circuit concepts and compared to the simulation results of multi-device  conlinear electromechanical circuit models. The degradation of the overall circuit nonlinearity with increasing number of device stages is investigated. Design rules are presented so that the mechanical parameters and thus the IIP3 of the individual device stages can be optimized to achieve a highest overall IIP3 for the whole circuit.The thesis further investigates un-patterned ferromagnetic NiFe/AlN multilayer composites used as advanced magnetic core materials for on-chip inductances. The approach used is to increase the thickness of the ferromagnetic material without increasing its conductivity, by using multilayer NiFe and AlN sandwich structure. This suppresses the induced currents very effectively and at the same time increases the ferromagnetic resonance, which is by a factor of 7.1 higher than for homogeneous NiFe layers of same thickness. The so far highest permeability values above 1 GHz for on-chip integrated un-patterned NiFe layers were achieved.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. xiii, 79 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2014:014
Keyword
Microelectromechanical systems, MEMS, Radio frequency microelectromechanical systems, RF MEMS, Micromachined transmission line, Micromachining, Tuneable capacitor, Switched capacitor, Coupled-line coupler, Tuneable directional coupler, Intermodulation distortion, MEMS varactor, Two-tone IIP3 measurement, Passive components and circuits, Reliability, Magnetic materials, NiFe multilayer composite, Permeability, Permittivity, Micromachined inductors
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-143757 (URN)978-91-7595-075-4 (ISBN)
Public defence
2014-04-24, F3, Lindstedtsvägen 26, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20140328

Available from: 2014-03-28 Created: 2014-03-27 Last updated: 2016-08-11Bibliographically approved
3. Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems
Open this publication in new window or tab >>Heterogeneous 3D Integration and Packaging Technologies for Nano-Electromechanical Systems
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Three-dimensional (3D) integration of micro- and nano-electromechanical systems (MEMS/NEMS) with integrated circuits (ICs) is an emerging technology that offers great advantages over conventional state-of-the-art microelectronics. MEMS and NEMS are most commonly employed as sensor and actuator components that enable a vast array of functionalities typically not attainable by conventional ICs. 3D integration of NEMS and ICs also contributes to more compact device footprints, improves device performance, and lowers the power consumption. Therefore, 3D integration of NEMS and ICs has been proposed as a promising solution to the end of Moore’s law, i.e. the slowing advancement of complementary metal-oxide-semiconductor (CMOS) technology.In this Ph.D. thesis, I propose a comprehensive fabrication methodology for heterogeneous 3D integration of NEM devices directly on top of CMOS circuits. In heterogeneous integration, the NEMS and CMOS components are fully or partially fabricated on separate substrates and subsequently merged into one. This enables process flexibility for the NEMS components while maintaining full compatibility with standard CMOS fabrication. The first part of this thesis presents an adhesive wafer bonding method using ultra-thin intermediate bonding layers which is utilized for merging the NEMS components with the CMOS substrate. In the second part, a novel NEM switch concept is introduced and the performance of CMOS-integrated NEM switch circuits for logic and computation applications is discussed. The third part examines two different packaging approaches for integrated MEMS and NEMS devices with either hermetic vacuum cavities or low-cost glass lids for optical applications. Finally, a novel fabrication approach for through silicon vias (TSVs) by magnetic assembly is presented, which is used to establish an electrical connection from the packaged devices to the outside world.

Abstract [sv]

Tredimensionell (3D) integration av mikro- och nano-elektromekaniska system (MEMS/NEMS) med integrerade kretsar (ICs) är en ny teknik som erbjuder stora fördelar jämfört med konventionell mikroelektronik. MEMS och NEMS används oftast som sensorer och aktuatorer då de möjliggör många funktioner som inte kan uppnås med vanliga ICs.3D-integration av NEMS och ICs bidrar även till mindre dimensioner, ökade prestanda och mindre energiförbrukning av elektriska komponenter. Den nuvarande tekniken för complementary metal-oxide-semicondictor (CMOS) närmar sig de fundamentala gränserna vilket drastiskt begränsar utvecklingsmöjligheten för mikroelektronik och medför slutet på Moores lag. Därför har 3D-integration identifierats som en lovande teknik för att kunna driva vidare utvecklingen för framtidens elektriska komponenter.I denna avhandling framläggs en omfattande fabrikationsmetodik för heterogen 3D-integration av NEMS ovanpå CMOS-kretsar. Heterogen integration betyder att både NEMS- och CMOS-komponenter byggs på separata substrat för att sedan förenas på ett enda substrat. Denna teknik tillåter full processfrihet för tillverkning av NEMS-komponenter och garanterar kompatibilitet med standardiserade CMOS-fabrikationsprocesser.I den första delen av avhandlingen beskrivs en metod för att sammanfoga två halvledarskivor med en extremt tunn adhesiv polymer. Denna metod demonstreras för 3D-integration av NEMS- och CMOS-komponenter. Den andra delen introducerar ett nytt koncept för NEM-switchar och dess användning i NEM-switch-baserade mikrodatorchip. Den tredje delen presenterar två olika inkapslingsmetoder för MEMS och NEMS. Den ena metoden fokuserar på hermetisk vakuuminkapsling medan den andra metoden beskriver en lågkostnadsstrategi för inkapsling av optiska komponenter. Slutligen i den fjärde delen presenteras en ny fabrikationsteknik för så kallade ”through silicon vias” (TSVs) baserad på magnetisk självmontering av nickeltråd på mikrometerskala.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2017. 55 p.
Series
TRITA-EE, ISSN 1653-5146 ; 2017:048
Keyword
Nano-electromechanical systems (NEMS), Micro-electromechanical systems (MEMS), heterogeneous 3D integration, CMOS integration, Morethan- Moore (MtM), adhesive wafer bonding, NEM switch, FPGA, contact reliability, hermetic vacuum packaging, Cu low-temperature welding, through silicon vias (TSVs), magnetic self-assembly
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-207185 (URN)978-91-7729-431-3 (ISBN)
Public defence
2017-06-15, Q2, Osquldas väg 10, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

20170519

Available from: 2017-05-19 Created: 2017-05-18 Last updated: 2017-05-19Bibliographically approved

Open Access in DiVA

fulltext(11164 kB)237 downloads
File information
File name FULLTEXT01.pdfFile size 11164 kBChecksum SHA-512
493e687ae29d380089b4ef7e8c54286632fc6df82f04b1e0beca00b3901f54180296220f3617d0bb66aead28bada28757ed88e3f0ddb25767dda70913ae85812
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusIEEEXplore

Search in DiVA

By author/editor
Bleiker, Simon J.Fischer, Andreas C.Shah, UmerSomjit, NutapongHaraldsson, TommyRoxhed, NiclasOberhammer, JoachimStemme, GöranNiklaus, Frank
By organisation
Micro and Nanosystems
In the same journal
IEEE Transactions on Components, Packaging, and Manufacturing Technology
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 237 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 432 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf