Change search
ReferencesLink to record
Permanent link

Direct link
Validation of Time Domain Flutter PredictionTool with Experimental Results
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In turbomachinery applications as propulsion and power generation, there is a continuous endeavour to design engines with higher efficiency, driving the compressor and turbine blades towards slimmer and more aerodynamically loaded configurations that frequently operate with fluids at higher temperatures and speeds. This combination of reduced design space and adverse operating environment makes the blades more susceptible to flutter and challenges the designer to predict its occurrence.

Nowadays there are different CFD solvers that allow the prediction of flutter in turbomachinery; some of them are more efficient than others and provide considerable computational power savings when compared with traditional CFD methods that sometimes require the simulation of several or all the blades in a given row.

The present thesis work is aimed at investigating the strengths and potential limitations of a novel time marching method for Flutter prediction in the Travelling Wave Mode (TWM) domain available in ANSYS CFX 14.5. The results are compared with experimental measurements obtained at the KTH test rig and CFD simulations in the Influence Coefficient Domain (INFC) performed in a previous MSc. Thesis in 2013.

An approach in CFX to solve flutter is the Fourier Transformation method that uses only two passages with phase lagged periodic boundary conditions. In the previous thesis only one operating point was calculated using this method. This project focuses on the extension of the calculations to various operating points and expanding the solver validation.

Place, publisher, year, edition, pages
2015. , 69 p.
Keyword [en]
Flutter, Vibration, Aeroelasticity, CFD
National Category
Fluid Mechanics and Acoustics
URN: urn:nbn:se:kth:diva-160541OAI: diva2:790267
Subject / course
Mechanical Engineering
Educational program
Master of Science - Turbomachinery Aeromechanic University Training
2014-09-23, M235, Brinellvägen 68, 10044, Stockholm, 15:00 (English)

Thesis work done at Siemens Industrial Turbomachinery, Finspang, Sweden.

Available from: 2015-03-23 Created: 2015-02-24 Last updated: 2015-03-23Bibliographically approved

Open Access in DiVA

fulltext(4217 kB)463 downloads
File information
File name FULLTEXT01.pdfFile size 4217 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Camara, Enrique
By organisation
Heat and Power Technology
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
Total: 463 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 276 hits
ReferencesLink to record
Permanent link

Direct link