Change search
ReferencesLink to record
Permanent link

Direct link
Feasibility Study of a 3D CFD Solution for FSI Investigations on NREL 5MW Wind Turbine Blade
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.
2015 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

With the increase in length of wind turbine blades flutter is becoming a potential design constrain, hence the interest in computational tools for fluid-structure interaction studies. The general approach to this problem makes use of simplified aerodynamic computational tools. Scope of this work is to investigate the outcomes of a 3D CFD simulation of a complete wind turbine blade, both in terms of numerical results and computational cost. The model studied is a 5MW theoretical wind turbine from NREL. The simulation was performed with ANSYS-CFX, with different volume mesh and turbulence model, in steady-state and transient mode. The convergence history and computational time was analyzed, and the pressure distribution was compared to a high fidelity numerical result of the same blade. All the model studied were about two orders of magnitude lighter than the reference in computation time, while showing comparable results in most of the cases. The results were affected more by turbulence model than mesh density, and some turbulence models did not converge to a solution. In general seems possible to obtain good results from a complete 3D CFD simulation while keeping the computational cost reasonably low. Attention should be paid to mesh quality.

Place, publisher, year, edition, pages
2015. , 86 p.
Keyword [en]
HAWT, CFD, Aeroelasticity
National Category
Energy Engineering
URN: urn:nbn:se:kth:diva-159690OAI: diva2:786912
Available from: 2015-06-29 Created: 2015-02-06 Last updated: 2015-06-29Bibliographically approved

Open Access in DiVA

fulltext(7129 kB)316 downloads
File information
File name FULLTEXT01.pdfFile size 7129 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 316 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 269 hits
ReferencesLink to record
Permanent link

Direct link