Change search
ReferencesLink to record
Permanent link

Direct link
Dymode: A parallel dynamic mode decomposition software
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0002-3194-5141
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering. KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center for ECO2 Vehicle design.ORCID iD: 0000-0002-9061-4174
2015 (English)Report (Other academic)
Abstract [en]

Dymode is a parallel program that computes dynamic mode decompositions. The code is written in C++ and relies on a number of libraries. Several parameters can be specified in order to control the computational aspects of the program as well as the input and output of the decomposition, particularly how the modes are sorted. Finally, dymode is almost entirely parallel and is therefore particularly suitable for computing the dynamic mode decomposition of large datasets.

The dymode package also includes dymodem, a Matlab implementation of the code which accepts the same arguments as dymode, when they are relevant, and produces the same output. It can be useful to use dymodem when dealing with smaller datasets, or to validate the output from dymode.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. , 36 p.
TRITA-AVE, ISSN 1651-7660 ; 2014:78
Keyword [en]
dynamic mode decomposition, dmd, parallel
National Category
Fluid Mechanics and Acoustics
Research subject
Engineering Mechanics
URN: urn:nbn:se:kth:diva-159643ISBN: 978-91-7595-386-1OAI: diva2:786623

QC 20150206

Available from: 2015-02-06 Created: 2015-02-06 Last updated: 2015-03-12Bibliographically approved
In thesis
1. Drag reduction using plasma actuators
Open this publication in new window or tab >>Drag reduction using plasma actuators
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is motivated by the application of active flow control on the cabin of trucks, thereby providing a new means of drag reduction. Particularly, the work presented strives to identify how plasma actuators can be used to reduce the drag caused by the detachment of the flow around the A-pillars. This is achieved by conducting numerical simulations, and is part of a larger project that also includes experimental.

The effect of plasma actuators is modeled through a body force, which adds very little computational cost and is suitable for implementation in most CFD solvers. The spatial distribution of this force is described by coefficients which have been optimized against experimental data, and the model was shown to be able to accurately reproduce the wall jet created by a single plasma actuator in a no-flow condition.

A half cylinder geometry - a simplified geometry for the A-pillar of a truck - was used in a preliminary Large Eddy Simulation (LES) study that showed that the actuator alone, operated continuously, was not sufficient to achieve a significant reduction of the drag. Nevertheless, a significant drag reduction was obtained by simply increasing the strength of the body force to a higher value, showing that this type of actuation remains relevant for the reduction of drag.

In the course of finding ways to improve the efficiency of the actuator, dynamic mode decomposition was investigated as a post-processing tool to extract structures in the flow. Such structures are identified by their spatial location and frequency, and might help to understand how the actuator should be used to maximize drag reduction. Thus a parallel code for dynamic mode decomposition was developed in order to facilitate the treatment of the large amounts of data obtained by LES. This code and LES itself were thereafter evaluated in the case of a pulsating channel flow. By using the dynamic mode decomposition it was possible to accurately extract oscillating profiles at the forcing frequency, although harmonics with lower amplitude compared to the turbulence intensity could not be obtained.

Abstract [sv]

Denna avhandling behandlar tillämpningen av aktiv strömningskontroll för lastbilshytter, vilket är en ny metod för minskning av luftmotståndet. Mer i detalj är det övergripande målet att visa på hur plasmaaktuatorer kan användas för att minska luftmotståndet orsakat av avlösningen runt A-stolparna. In denna avhandling studeras detta genom numeriska simuleringar. Arbetet är en del av ett projekt där även experimentella försök görs.

Effekten av plasmaaktuatorer modelleras genom en masskraft, vilket inte ger nämnvärd ökning av beräkningstiden och är lämplig för implementering i de flesta CFD-lösare. Den rumsliga fördelningen av kraften bestäms av koefficienter vilka i detta arbete beräknades utifrån experimentella data. Modellen har visat sig kunna återskapa en stråle nära väggen med god noggrannhet av en enskild plasmaaktuator för en halvcylinder utan strömning.

Samma geometri - en halvcylinder som här används som förenklad geometri av A-stolpen på en lastbil - användes i en preliminär LES studie som visade att enbart aktuatorn vid kontinuerlig drift inte var tillräckligt för att uppnå en signifikant minskning av luftmotståndet. En signifikant minskning av luftmotståndet erhölls genom att helt enkelt öka styrkan på kraften, vilket visats att denna typ av strömningskontroll är relevant för minskning av luftmotståndet.

I syfte att förbättra effektiviteten hos aktuatorn, studerades dynamic mode decomposition, som ett verktyg för efterbehandling för att få fram flödesstrukturer. Dessa strukturer identifieras genom deras rumsupplösning och frekvens och kan hjälpa till att förstå hur aktuatorerna bör användas för att minska luftmotståndet. En parallelliserad kod för dynamic mode decomposition utvecklades för att underlätta efterbehandlingen av de stora datamängder som fås från LES-beräkningarna. Slutligen, utvärderades denna kod och LES-beräkningar på ett strömningsfall med pulserande kanalflöde. Metoden, dynamic mode decomposition, visade sig kunna extrahera de oscillerande flödesprofilerna med hög noggrannhet för den påtvingade frekvensen. Övertoner med lägre amplitud jämfört med turbulensintensiteten kunde dock inte erhållas.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 10, 52 p.
TRITA-AVE, ISSN 1651-7660 ; 2015:10
flow control, drag reduction, plasma actuator, DMD, LES, optimization, pulsating flow, strömningskontroll, motståndsminskning, plasma ställdon, DMD, LES, optimering, pulserande flöde
National Category
Vehicle Engineering
Research subject
Engineering Mechanics
urn:nbn:se:kth:diva-161409 (URN)978-91-7595-479-0 (ISBN)
2015-03-27, Vehicle Engineering Lab, Teknikringen 8 KTH, Stockholm, 10:00 (English)
Swedish Energy Agency, 34186-1

QC 20150312

Available from: 2015-03-12 Created: 2015-03-11 Last updated: 2015-03-12Bibliographically approved

Open Access in DiVA

dymode(652 kB)214 downloads
File information
File name FULLTEXT01.pdfFile size 652 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Futrzynski, RomainEfraimsson, Gunilla
By organisation
Aeronautical and Vehicle EngineeringLinné Flow Center, FLOWVinnExcellence Center for ECO2 Vehicle design
Fluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
Total: 214 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 4799 hits
ReferencesLink to record
Permanent link

Direct link