Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Applications of self-assembling peptide scaffolds in regenerative medicine: the way to the clinic
Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
Linköping University, Department of Clinical and Experimental Medicine, Division of Cell Biology. Linköping University, Faculty of Health Sciences.ORCID iD: 0000-0003-1222-6720
Linköping University, Department of Physics, Chemistry and Biology, Molecular Physics. Linköping University, The Institute of Technology.
2014 (English)In: Journal of materials chemistry. B, ISSN 2050-750X, E-ISSN 2050-7518, Vol. 2, no 48, 8466-8478 p.Article in journal (Refereed) Published
Abstract [en]

Peptides that self-assemble into well-defined nanofibrous networks provide a prominent alternative to traditional biomaterials for fabricating scaffolds for use in regenerative medicine and other biomedical applications. Such scaffolds can be generated by decorating a peptide backbone with other bioactives such as cell specific adhesion peptides, growth factors and enzyme cleavable sequences. They can be designed to mimic the three-dimensional (3D) structural features of native ECM and can therefore also provide insight into the ECM-cell interactions needed for development of scaffolds that can serve as regeneration templates for specific target tissues or organs. This review highlights the potential application of self-assembling peptides in regenerative medicine.

Place, publisher, year, edition, pages
Royal Society of Chemistry , 2014. Vol. 2, no 48, 8466-8478 p.
National Category
Physical Sciences Clinical Medicine
Identifiers
URN: urn:nbn:se:liu:diva-113073DOI: 10.1039/c4tb01095gISI: 000345529400002OAI: oai:DiVA.org:liu-113073DiVA: diva2:778235
Note

Funding Agencies|Swedish Research Council, Sweden [2012-42315-94008-81]

Available from: 2015-01-09 Created: 2015-01-08 Last updated: 2017-12-05
In thesis
1. Extracellular matrix mimetic multi-functional scaffolds for tissue engineering and biomedical applications
Open this publication in new window or tab >>Extracellular matrix mimetic multi-functional scaffolds for tissue engineering and biomedical applications
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Regeneration of functional tissues or complex organs via the combination of viable cells, biomimetic scaffolds, morphogenic factors, and external biophysical cues are the principle aims of Tissue Engineering (TE). TE relies on the use of artificial 3D scaffolds that can mimic the microenvironment of native tissue to harness the regenerative potential of cells. The 3D scaffold provides an appropriate structural and functional support to foster the dynamic interplay of cells and signalling molecules to facilitate the formation of functional tissue. Taking inspiration from the multi-component and multi-functional role of native extracellular matrices (ECM), scaffold engineering provides a platform to understand and integrate the critical features from micro to macro scale necessary for repair and regeneration of tissues. Scaffold engineering also enables the interconnection of TE with its sub-disciplines such as drug delivery, in vitro disease modelling, biosensors or surgical science etc., by designing appropriate multi-functional scaffolds suitable for target specific applications.

This thesis, addresses existing challenges to manipulate and customise ECM mimicking scaffolds and approaches to overcome these problems, by emphasising the importance of biomaterial design that can emulate the native ECM and potentially be tuned for tissue specific applications. Type I Collagen was functionalised with reactive methacrylate groups without altering its native triple helical structure. Methacrylated collagen (MAC) was further used as a functional building block to fabricate tuneable multifunctional scaffolds using bio-orthogonal thiol-Michael addition click chemistry by optimising several biophysical and biochemical parameters. This method provides the flexibility needed to fabricate injectable and implantable scaffolds based on the same functional components by tuning the modulus from Pa to kPa, thus rendering scaffolds suitable for use for either soft or hard tissues. The versatility of the scaffolds was evaluated by using it as pre-fabricated substrate for human corneal epithelial cells and as an injectable scaffold encapsulated with cardiac progenitor cells.

The potential of MAC serving as a building block for engineering tailored made ECM mimetic scaffolds was further demonstrated by fabricating smart multi-functional stimuliresponsive scaffolds and conductive scaffolds using a free-radical co-polymerisation technique by choosing appropriate counterparts (polymers). The co-polymerisation of MAC and N-isopropyl acrylamide (NIPAm) formed an in situ, fast gellable, dual responsive (temp and pH) hydrogel comprising covalently linked networks of collagen and thermoresponsive NIPAm polymer. The multi-functionality of these hydrogels was demonstrated as an in-situ depot-forming tunable delivery platform for proteins and small drugs and as a structural support for human skeletal muscle cells. Pyrrole as a monomer was co-polymerised with MAC resulting in MAC-polypyrrole conductive hydrogel scaffold. The utility of ECM mimetic injectable conductive hydrogel scaffold was explored as a long-term continuous glucose-monitoring sensor under physiological conditions.

Further, to overcome several challenges of Collagen such as inconsistent batch-tobatch reproducibility, risk of disease transmission, stability etc., a collagen-like-peptide (CLP) scaffold was designed as an alternative to collagen. This thesis demonstrates the use of Flexible Template Assisted Self-Assembly (TASS) of CLPs to mimic higher order collagen triple helical assembly by conjugating 38 amino acid length CLP with a multi-arm PEG maleimide template. 8-armPEG conjugated CLP (PEG-CLP) was used to fabricate robust hydrogel scaffolds using carbodiimide chemistry. The biocompatibility and potential of CLP scaffolds as an alternative to collagen was demonstrated by implanting it in mini pigs using corneal transplantation as a test bed. The bottom up-approach to assemble ECM mimetic functional peptides also allows us to design or manipulate CLPs with other bioactive motifs such as RGD or IKVAV to promote specific cell activities suitable for specific tissue regeneration.

Overall, this thesis provides a modular platform to engineer multi-functional tunable ECM scaffolds based on type I Collagen and collagen-like peptides that combines multiple structural and bio-functional features for wide range of tissue engineering applications.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2018. 75 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1890
National Category
Medical Materials
Identifiers
urn:nbn:se:liu:diva-142769 (URN)9789176854051 (ISBN)
Public defence
2018-01-15, Planck, Fysikhuset, Campus Valla, Linköping, 10:00 (English)
Opponent
Supervisors
Available from: 2017-11-02 Created: 2017-11-02 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

fulltext(1113 kB)692 downloads
File information
File name FULLTEXT01.pdfFile size 1113 kBChecksum SHA-512
c9caf48f8cb122623618786bda6c9028015451784ee8cf5fb8c9fd30dcb6f71f7aafa6ec74d17ccb8c0098ad99ec3373eb826a3985bb8db64c6fc678e5b3909b
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Ravichandran, RanjithkumarGriffith, MayPhopase, Jaywant
By organisation
Molecular PhysicsThe Institute of TechnologyDivision of Cell BiologyFaculty of Health Sciences
In the same journal
Journal of materials chemistry. B
Physical SciencesClinical Medicine

Search outside of DiVA

GoogleGoogle Scholar
Total: 692 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 191 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf