Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Chemistry: content, context and choices: towards students' higher order problem solving in upper secondary school
Umeå University, Faculty of Science and Technology, Department of Science and Mathematics Education. (UmSER)ORCID iD: 0000-0002-7688-651X
2015 (English)Doctoral thesis, comprehensive summary (Other academic)Alternative title
Kemi: kunskaper, kontext och val : en väg mot mer avancerad problemlösningsförmåga bland gymnasieelever (Swedish)
Abstract [en]

Chemistry is often claimed to be difficult, irrelevant, and uninteresting to school students. Even students who enjoy doing science often have problems seeing themselves as being scientists. This thesis explores and challenges the negative perception of chemistry by investigating upper secondary students’ views on the subject. Based on students’ ideas for improving chemistry education to make the subject more interesting and meaningful, new learning approaches rooted in context-based learning (CBL) are presented. CBL approaches are applied in several countries to enhance interest, de-emphasise rote learning, and improve students’ higher order thinking.

Students’ views on upper secondary school chemistry classes in combination with their problem- solving strategies and application of chemistry content knowledge when solving context-based chemistry tasks were investigated using a mixed methods approach. Questionnaire responses, written solutions to chemistry problems, classroom observations, and think-aloud interviews with upper secondary students at the Natural Science Programme and with experts working on context- based chemistry tasks were analysed to obtain a general overview and explore specific issues in detail.

Several students were identified who had positive feelings about chemistry, found it interesting, and chose to continue with it beyond the compulsory level, mainly with the aim of future university studies or simply because they enjoyed it. Their suggestions for improving school chemistry by connecting it to everyday life prompted an exploration of CBL approaches. Studies on the cognitive learning outcomes arising from the students’ work on context-based tasks revealed that school chemistry heavily emphasises the recall of memorised facts. However, there is evidence of higher order thinking when students’ problem-solving processes are scaffolded using hints based on the Model of Hierarchical Complexity in Chemistry (MHC-C). In addition, the contextualisation of problems is identified as something that supports learning rather than distracting students.

To conclude, the students in this thesis are interested in chemistry and enjoy chemistry education, and their motives for choosing to study chemistry at the post-compulsory level are related to their aspirations; students’ identity formation is important for their choices. Because students are accustomed to recalling facts and solving chemistry problems that have “one single correct answer”, they find more open problems that demand higher order thinking (e.g. knowledge transfer) unfamiliar and complex, suggesting that such processes should be practiced more often in school chemistry. 

Abstract [sk]

Kemi är ett skolämne som generellt anses vara både svårt, irrelevant och ointressant för ungdomar. Trots att det ändå finns ungdomar som uppskattar naturvetenskap i allmänhet och kemi i synnerhet, har de ofta problem att se sig själva som naturvetare eller kemister. Denna avhandling undersöker och ifrågasätter den negativa bilden av kemiämnet genom att till en början studera gymnasieelevers syn på kemi. Med utgångspunkt från naturvetarelevers förslag för att förbättra kemiundervisningen och göra ämnet mer intressant och meningsfullt, anknyter avhandlingen därefter till kontextbaserad kemi. Kontextbaserade kurser används i flera länder för att öka elevernas intresse, minska fokuseringen på utantillkunskaper och utveckla elevernas mer avancerade tänkande; med andra ord med målet att uppnå ett meningsfullt lärande. Vid kontextbaserade angreppssätt utgår man från ett sammanhang (kontexten), ofta något personligt eller samhälleligt, som ska vara relevant och intressant. Från dessa kontexter koncentreras därefter undervisningen på de ämneskunskaper man behöver ha för att förstå sammanhanget (s.k. need-to-know). Syftet med avhandlingen är att undersöka naturvetarelevers syn på gymnasiekemin, både deras intresse för ämnet och deras skäl att välja det naturvetenskapliga programmet på gymnasiet, samt elevernas problemlösningsförmåga och användande av ämneskunskaper när de löser kontextbaserade kemiuppgifter. Skälet att studera naturvetarelever på gymnasiet är att dessa elever uppfattas som möjliga framtida naturvetare eftersom de själva har valt naturvetenskaplig inriktning efter den obligatoriska grundskolan. Med hjälp av olika metoder (enkäter, klassrums- observationer, skriftliga lösningar till kemiuppgifter och intervjuer med både elever och experter som löser kemiuppgifter) har analyser genomförts för att dels får en allmän överblick, dels för att utforska specifika delar i detalj både gällande kognitiva och affektiva aspekter av lärande. Resultaten visar att flertalet elever har en positiv inställning till kemi, många tycker att ämnet är intressant och har valt att fortsätta läsa kemi efter den obligatoriska grundskolan främst med målet att studera vidare på universitetsnivå, men också eftersom de specifikt uppskattar kemi. Gymnasieeleverna lyfter fram lärarna som viktiga och lärarstyrda kemilektioner anses positivt, speciellt om lärarna är strukturerade i sin undervisning. Ett vanligt skäl till att välja naturvetenskapsprogrammet är också att man aktivt väljer utbildning med utgångspunkt från vilken skola man vill gå på, något som i denna avhandling tolkas som ett identitetsskapande. Elevernas förslag för att förbättra skolkemin genom att anknyta kemin till vardagen låg till grund för avhandlingens fortsatta inriktning mot kontextbaserade angreppssätt. Analyser av elevernas kognitiva resultat när de löser kontextbaserade kemiuppgifter visar att dagens skolkemi tydligt fokuserar på att memorera faktakunskaper. Eleverna är vana att använda utantillkunskaper när de löser kemiuppgifter eftersom uppgifterna, enligt eleverna, efterfrågar ”det rätta svaret”. Däremot visar studierna också att ett mer avancerat tänkande kan uppnås när elevernas problemlösning stöds av hjälp och ledtrådar som baseras på ett specifikt ramverk, MHC-C (Model of Hierarchical Complexity in Chemistry). När det gäller ämneskunskaperna som krävs för att lösa de kontextbaserade kemiuppgifterna är vissa kemibegrepp viktiga tröskelbegrepp (sk. threshold concepts). Med hjälp av medvetenhet om tröskelbegrepp, som exempelvis polaritet och elektronegativitet för löslighetsuppgifter inom den organiska kemin, kan en större helhetsförståelse för övergripande begrepp (crosscutting disciplinary concepts) som förhållandet mellan kemiska ämnens struktur och egenskaper förhoppningsvis uppnås. När det gäller affektiva resultat anser eleverna att kontexterna i uppgifterna både var intressanta och relevanta, främst när en personlig anknytning var tydlig. Dessutom visade sig kontexterna i uppgifterna vara positiva för lärandet, inte en distraktionsfaktor. Sammanfattningsvis konstateras att svenska elever på naturvetenskaps- programmet är intresserade av kemi och uppskattar kemiundervisningen, speciellt om kemin knyts till vardagen och att lärarna har en tydlig struktur i sin undervisning. Elevernas skäl att välja fortsatta kemistudier efter den obligatoriska grundskolan kan knytas till deras utbildningssträvan men också att elevers identitetsskapande är viktigt för deras gymnasieval. Med hjälp av kontextbaserade angreppssätt kan kemiundervisningen göras mer intressant och relevant samtidigt som elevernas problemlösningsförmåga kan utvecklas. När eleverna möter mer öppna frågor som kräver förklaringar och resonemang är de ovana vid detta och uppfattar uppgifterna komplicerade, samtidigt som de uppskattar denna typ av uppgifter eftersom de uppfattas relevanta och intressanta. Slutsatsen blir att elevernas förmåga till problemlösning av öppna frågor som både kräver faktakunskaper men också förklaringar och resonemang måste tränas oftare inom ramen för skolans kemi för att utveckla elevernas meningsfulla lärande.

Place, publisher, year, edition, pages
Umeå: Umeå universitet , 2015. , 99 p.
Keyword [en]
chemistry education, upper secondary students, meaningful learning, higher order thinking, problem solving, context-based learning, interest, educational choice, identity
National Category
Didactics
Research subject
didactics of chemistry
Identifiers
URN: urn:nbn:se:umu:diva-95956ISBN: 978-91-7601-157-7 (print)OAI: oai:DiVA.org:umu-95956DiVA: diva2:777015
Public defence
2015-02-06, N360, Naturvetarhuset, Umeå, 10:00 (English)
Opponent
Supervisors
Available from: 2015-01-16 Created: 2014-11-10 Last updated: 2015-01-14Bibliographically approved
List of papers
1. Chemistry in crisis?: Perspectives on teaching and learning chemistry in Swedish upper secondary schools
Open this publication in new window or tab >>Chemistry in crisis?: Perspectives on teaching and learning chemistry in Swedish upper secondary schools
2011 (English)In: NorDiNa: Nordic Studies in Science Education, ISSN 1504-4556, E-ISSN 1894-1257, Vol. 7, no 1, 43-60 p.Article in journal (Refereed) Published
Abstract [en]

Explanations for a decline in the number of students studying chemistry at advanced level all over the world have been sought for quite some time. Many students do not find chemistry relevant and meaningful and there have been difficulties in developing school chemistry courses that engage students sufficiently and tempt them to further studies in the field. In this study, Swedish upper secondary school students (Ns=372) and their teachers (Nt=18) answered a questionnaire on their experiences of the content and the working methods of their chemistry course. They were also given the opportunity to express ideas on how to make chemistry courses more interesting and meaningful. The results point out some subject areas as both easy and interesting, e.g. atomic structure; while other areas are hard to understand but still interesting, e.g. biochemistry. The students find chemistry lessons teacher-centred, something they appreciate. When teachers and students gave suggestions on how to improve the relevance of chemistry education at upper secondary level, more laboratory work and connections to everyday life were the most common proposals. But on the whole, these students seem quite satisfied with their chemistry courses.

Place, publisher, year, edition, pages
Oslo: Naturfagsentret, 2011
National Category
Chemical Sciences Didactics
Research subject
didactics of chemistry
Identifiers
urn:nbn:se:umu:diva-40988 (URN)
Available from: 2012-01-11 Created: 2011-03-15 Last updated: 2017-12-11Bibliographically approved
2. Upper secondary school students' choice and their ideas on how to improve chemistry education
Open this publication in new window or tab >>Upper secondary school students' choice and their ideas on how to improve chemistry education
2015 (English)In: International Journal of Science and Mathematics Education, ISSN 1571-0068, E-ISSN 1573-1774, Vol. 13, no 6, 1255-1278 p.Article in journal (Refereed) Published
Abstract [en]

In Sweden, there is concern about fewer students taking chemistry courses in higher education, especially at university level. Using a survey, this study investigates the reasons upper secondary school chemistry students choose to follow the Swedish Natural Science Programme. In addition, students’ views about their chemistry education are sought and their ideas about how to improve their chemistry experience. A questionnaire with closed and open questions was completed by 495 chemistry students from different schools in Sweden. The analysis shows that most students have high interest-enjoyment value of chemistry, but both positive and negative responses about their chemistry education refer to the importance of the teacher and the structure of lessons. To improve their chemistry experience, students suggest making it relevant to everyday life and being more practical and more student centred. For positively inclined students to maintain their value of chemistry beyond schooling into choice at university level, the programme should take these suggestions into account. 

Place, publisher, year, edition, pages
Springer, 2015
Keyword
chemistry education, relevance, student choice, student interest, upper secondary school
National Category
Didactics
Research subject
didactics of chemistry
Identifiers
urn:nbn:se:umu:diva-88021 (URN)10.1007/s10763-014-9550-0 (DOI)000365728500004 ()
Note

Published online: 22 May 2014

Available from: 2014-04-22 Created: 2014-04-22 Last updated: 2017-12-05Bibliographically approved
3. Analysing Task Design and Students’ Responses to Context-Based Problems Through Different Analytical Frameworks
Open this publication in new window or tab >>Analysing Task Design and Students’ Responses to Context-Based Problems Through Different Analytical Frameworks
2015 (English)In: Research in Science & Technological Education, ISSN 0263-5143, E-ISSN 1470-1138, Vol. 33, no 2, 143-161 p.Article in journal (Refereed) Published
Abstract [en]

Background: Context-based learning approaches are used to enhance students’ interest in, and knowledge about, science. According to different empirical stud- ies, students’ interest is improved by applying these more non-conventional approaches, while effects on learning outcomes are less coherent. Hence, further insights are needed into the structure of context-based problems in comparison to traditional problems, and into students’ problem-solving strategies. Therefore, a suitable framework is necessary, both for the analysis of tasks and strategies. Purpose: The aim of this paper is to explore traditional and context-based tasks as well as students’ responses to exemplary tasks to identify a suitable frame- work for future design and analyses of context-based problems. The paper dis- cusses different established frameworks and applies the Higher-Order Cognitive Skills/Lower-Order Cognitive Skills (HOCS/LOCS) taxonomy and the Model of Hierarchical Complexity in Chemistry (MHC-C) to analyse traditional tasks and students’ responses. Sample: Upper secondary students (n=236) at the Natural Science Programme, i.e. possible future scientists, are investigated to explore learning outcomes when they solve chemistry tasks, both more conventional as well as context-based chemistry problems. Design and methods: A typical chemistry examination test has been analysed, first the test items in themselves (n=36), and thereafter 236 students’ responses to one representative context-based problem. Content analysis using HOCS/ LOCS and MHC-C frameworks has been applied to analyse both quantitative and qualitative data, allowing us to describe different problem-solving strategies. Results: The empirical results show that both frameworks are suitable to identify students’ strategies, mainly focusing on recall of memorized facts when solving chemistry test items. Almost all test items were also assessing lower order think- ing. The combination of frameworks with the chemistry syllabus has been found successful to analyse both the test items as well as students’ responses in a sys- tematic way. The framework can therefore be applied in the design of new tasks, the analysis and assessment of students’ responses, and as a tool for teachers to scaffold students in their problem-solving process. Conclusions: This paper gives implications for practice and for future research to both develop new context-based problems in a structured way, as well as pro- viding analytical tools for investigating students’ higher order thinking in their responses to these tasks.

Keyword
context-based chemistry, problem solving, task design, analytical frameworks, upper secondary students
National Category
Didactics
Research subject
didactics of chemistry
Identifiers
urn:nbn:se:umu:diva-79529 (URN)10.1080/02635143.2014.989495 (DOI)000354532600002 ()
Note

Published online: 06 Jan 2015

Available from: 2014-11-17 Created: 2013-08-21 Last updated: 2017-12-05Bibliographically approved
4. Context-Based Teaching and Learning on School and University Level
Open this publication in new window or tab >>Context-Based Teaching and Learning on School and University Level
2015 (English)In: Chemistry Education: Best Practices, Innovative Strategies and New Technologies / [ed] Garcia-Martinez, J., Serrano-Torregrosa, E., Berlin: Wiley-VCH Verlagsgesellschaft, 2015, 259-278 p.Chapter in book (Refereed)
Place, publisher, year, edition, pages
Berlin: Wiley-VCH Verlagsgesellschaft, 2015
National Category
Didactics
Research subject
didactics of chemistry
Identifiers
urn:nbn:se:umu:diva-93556 (URN)9783527336050 (ISBN)
Available from: 2014-10-19 Created: 2014-09-24 Last updated: 2016-09-30Bibliographically approved
5. Students' application of chemical concepts when solving chemistry problems in different contexts
Open this publication in new window or tab >>Students' application of chemical concepts when solving chemistry problems in different contexts
2014 (English)In: Chemistry Education Research and Practice, ISSN 1756-1108, E-ISSN 1756-1108, Vol. 15, no 4, 516-529 p.Article in journal (Refereed) Published
Abstract [en]

Context-based learning approaches have been implemented in school science over the last 40 years as a way to enhance students' interest in, as well as learning outcomes from, science. Contexts are used to connect science with the students' lives and to provide a frame in which concepts can be learned and applied on a ‘need-to-know’-principle. While effects on interest are coherently reported as positive, they are more diverse regarding cognitive learning outcomes. Hence, the demand for further research on criteria of context-based problems and problem-solving processes has been stated. In this paper, a study is presented investigating students' application of chemical concepts when solving context-based chemistry problems. Tasks for context-based problem solving have been designed systematically, using different combinations of contexts, topics and chemistry concepts in relation to the syllabus. Empirical data were collected using think-aloud interviews where 20 upper secondary students used their chemical content knowledge to solve the problems. The 15 context-based problems raised challenges within organic chemistry where concepts like electronegativity, polarity and solubility had to be applied. The difficulty to differentiate between intra- and intermolecular bonding emphasised in earlier research has also been apparent in this study. Besides the structural formula, which was an important part for the students when solving the tasks, the contextualisation of the problems was often used in the responses; students related their answers to the personal, societal or professional context in different ways. The paper explores the results and gives implications for context-based teaching, learning and assessment.

Place, publisher, year, edition, pages
RSC Publishing, 2014
National Category
Didactics Other Chemistry Topics
Research subject
didactics of chemistry
Identifiers
urn:nbn:se:umu:diva-87772 (URN)10.1039/C4RP00051J (DOI)000343036600009 ()
Available from: 2014-04-09 Created: 2014-04-09 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

omslag(1340 kB)45 downloads
File information
File name COVER01.pdfFile size 1340 kBChecksum SHA-512
001587bc52feeb6ad924f6b123c3bcc2038cce803b7a18bb79f7a499ddb9f574a7c075d6df6bd6c7ebdcae441b262abe212f291250efd21729af082a1d9d9ebc
Type coverMimetype application/pdf
spikblad(66 kB)15 downloads
File information
File name SPIKBLAD01.pdfFile size 66 kBChecksum SHA-512
14dacd653325fd9af60be27190de411da79aee457649c6bf19462dccc21320928324123ae24d75ca311ce893cdef6b8bc8b16269b2adb16f6d0b4b82db9fb7d7
Type spikbladMimetype application/pdf
fulltext(1216 kB)851 downloads
File information
File name FULLTEXT01.pdfFile size 1216 kBChecksum SHA-512
508b6bbc50b376e3c1c335934c59c949f0cddaf1556aed61eb7de323750fce236238c2240a655922eea3402932d701d5b051a312a3f19053dc13359dd297d57d
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Broman, Karolina
By organisation
Department of Science and Mathematics Education
Didactics

Search outside of DiVA

GoogleGoogle Scholar
Total: 851 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 3581 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf