Change search
ReferencesLink to record
Permanent link

Direct link
Accurate Assignment of Significance to Neuropeptide Identifications Using Monte Carlo K-Permuted Decoy Databases
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Pharmaceutical Biosciences.
Show others and affiliations
2014 (English)In: PLoS ONE, ISSN 1932-6203, Vol. 9, no 10, e111112- p.Article in journal (Refereed) Published
Abstract [en]

In support of accurate neuropeptide identification in mass spectrometry experiments, novel Monte Carlo permutation testing was used to compute significance values. Testing was based on k-permuted decoy databases, where k denotes the number of permutations. These databases were integrated with a range of peptide identification indicators from three popular open-source database search software (OMSSA, Crux, and X! Tandem) to assess the statistical significance of neuropeptide spectra matches. Significance p-values were computed as the fraction of the sequences in the database with match indicator value better than or equal to the true target spectra. When applied to a test-bed of all known manually annotated mouse neuropeptides, permutation tests with k-permuted decoy databases identified up to 100% of the neuropeptides at p-value < 10(-5). The permutation test p-values using hyperscore (X! Tandem), E-value (OMSSA) and Sp score (Crux) match indicators outperformed all other match indicators. The robust performance to detect peptides of the intuitive indicator "number of matched ions between the experimental and theoretical spectra" highlights the importance of considering this indicator when the p-value was borderline significant. Our findings suggest permutation decoy databases of size 1x10(5) are adequate to accurately detect neuropeptides and this can be exploited to increase the speed of the search. The straightforward Monte Carlo permutation testing (comparable to a zero order Markov model) can be easily combined with existing peptide identification software to enable accurate and effective neuropeptide detection. The source code is available at

Place, publisher, year, edition, pages
2014. Vol. 9, no 10, e111112- p.
National Category
Chemical Sciences
URN: urn:nbn:se:uu:diva-240011DOI: 10.1371/journal.pone.0111112ISI: 000345204100115PubMedID: 25329667OAI: diva2:775892
Available from: 2015-01-05 Created: 2015-01-05 Last updated: 2015-01-05Bibliographically approved

Open Access in DiVA

fulltext(647 kB)71 downloads
File information
File name FULLTEXT01.pdfFile size 647 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Andrén, Per E.
By organisation
Department of Pharmaceutical Biosciences
In the same journal
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 71 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 291 hits
ReferencesLink to record
Permanent link

Direct link