Change search
ReferencesLink to record
Permanent link

Direct link
Online Monocular SLAM: Rittums
Linköping University, Department of Electrical Engineering, Computer Vision. Linköping University, The Institute of Technology. (cvl)
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

A classic Computer Vision task is the estimation of a 3D map from a collection of images. This thesis explores the online simultaneous estimation of camera poses and map points, often called Visual Simultaneous Localisation and Mapping [VSLAM]. In the near future the use of visual information by autonomous cars is likely, since driving is a vision dominated process. For example, VSLAM could be used to estimate the position of the car in relation to objects of interest, such as the road, other cars and pedestrians. Aimed at the creation of a real-time, robust, loop closing, single camera SLAM system, the properties of several state-of-the-art VSLAM systems and related techniques are studied. The system goals cover several important, if difficult, problems, which makes a solution widely applicable. This thesis makes two contributions: A rigorous qualitative analysis of VSLAM methods and a system designed accordingly. A novel tracking by matching scheme is proposed, which, unlike the trackers used by many similar systems, is able to deal better with forward camera motion. The system estimates general motion with loop closure in real time. The system is compared to a state-of-the-art monocular VSLAM algorithm and found to be similar in speed and performance.

Place, publisher, year, edition, pages
2014. , 89 p.
Keyword [en]
SLAM SFM Visual Odometry Kitti Monocular Loopclosure
National Category
URN: urn:nbn:se:liu:diva-112779ISRN: Lith-ISY-EX--13/4741-SEOAI: diva2:771912
Subject / course
Computer Vision Laboratory
Available from: 2014-12-19 Created: 2014-12-15 Last updated: 2014-12-19Bibliographically approved

Open Access in DiVA

fulltext(1656 kB)390 downloads
File information
File name FULLTEXT01.pdfFile size 1656 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Persson, Mikael
By organisation
Computer VisionThe Institute of Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 390 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 642 hits
ReferencesLink to record
Permanent link

Direct link