Change search
CiteExportLink to record
Permanent link

Direct link
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Direct Lithography of Rubbery OSTE+ Polymer
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.ORCID iD: 0000-0001-8531-5607
Mercene Labs, Stockholm, SWEDEN.
KTH, School of Electrical Engineering (EES), Micro and Nanosystems.
Show others and affiliations
2014 (English)In: Proceedings 18th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS2014), 14CBMS , 2014, 123-125 p.Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

We present a Rubbery, Off-Stoichiometric Thiol-Ene-epoxy (OSTE+) polymer for direct lithography manufacturing, demonstrate its use in pneumatic pinch microvalves for lab-on-chip applications, test the lithography process achieving pillars of aspect-ratios (a.r.) 1:8, and characterize it’s surface as hydrophilic.

Place, publisher, year, edition, pages
14CBMS , 2014. 123-125 p.
Keyword [en]
OSTE+, PDMS, microfluidics, Thiol-ene
National Category
Biomaterials Science
URN: urn:nbn:se:kth:diva-157712ISBN: 978-0-9798064-7-6 (print)OAI: diva2:771247
18th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS 2014),October 26-30, 2014, San Antonio, Texas, USA
EU, FP7, Seventh Framework Programme, 66677

QC 20141217

Available from: 2014-12-12 Created: 2014-12-12 Last updated: 2016-01-22Bibliographically approved
In thesis
1. From Lab to Chip – and back: Polymer microfluidic systems for sample handling in point-of-care diagnostics
Open this publication in new window or tab >>From Lab to Chip – and back: Polymer microfluidic systems for sample handling in point-of-care diagnostics
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis contributes to the development of Lab-on-a-Chip systems that enables reliable, rapid medical diagnostics at the point-of-care. These contributions are focused on microfluidic Lab-on-a-Chip systems for sepsis diagnosis, autonomous sample-to-answer tests, and dried blood spot sampling.

Sepsis is a serious condition with high mortality and high costs for society and healthcare. To facilitate rapid and effective antibiotic treatment, improved sepsis diagnostics is needed. Diagnosis of sepsis requires the processing of relatively large blood volumes, creating a need for novel and effective techniques for the handling of large volume flows and pressures on chip. Components, materials, and manufacturing methods for pneumatically driven Lab-on-a-Chip systems have therefore been developed in this thesis. Microvalves, an essential component in many Lab-on-a-Chip systems have been the focus on several of the advances: a novel elastomeric material (Rubbery Off-Stoichiometric-Thiol-Ene-Epoxy) with low gas and liquid permeability; the first leak-tight vertical membrane microvalves, allowing large channel cross-sections for high volumetric flow throughput; and novel PDMS manufacturing methods enabling their realization. Additionally, two of the new components developed in this thesis focus on separation of bacteria from blood cells based on differences in particle size, and cell wall composition: inertial microfluidic removal of large particles in multiple parallel microchannels with low aspect ratio; and selective lysis of blood cells while keeping bacteria intact. How these components, materials and methods could be used together to achieve faster sepsis diagnostics is also discussed.

Lab-on-a-Chip tests can not only be used for sepsis, but have implications in many point-of-care tests. Disposable and completely autonomous sampleto- answer tests, like pregnancy tests, are capillary driven. Applying such tests in more demanding applications has traditionally been limited by poor material properties of the paper-based products used. A new porous material, called “Synthetic Microfluidic Paper”, has been developed in this thesis. The Synthetic Microfluidic Paper features well-defined geometries consisting of slanted interlocked micropillars. The material is transparent, has a large surface area, large porous fraction, and results in low variability in capillary flowrates. The fact that Synthetic Microfluidic Paper can be produced with multiple pore sizes in the same sheet enables novel concepts for self-aligned spotting of liquids and well-controlled positioning of functional microbeads.

Diagnostic testing can also be achieved by collecting the sample at the point-of-care while performing the analysis elsewhere. Easy collection of finger-prick blood in paper can be performed by a method called dried blood spots. This thesis investigates how the process of drying affects the homogeneity of dried blood spots, which can explain part of the variability that has been measured in the subsequent analysis. To reduce this variability, a microfluidic sampling chip has been developed in this thesis. The chip, which is capillary driven, autonomously collects a specific volume of plasma from a drop of blood, and dry-stores it in paper. After sampling, the chip can be mailed back to a central lab for analysis.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. xiii, 75 p.
TRITA-EE, ISSN 1653-5146 ; 2016:002
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
urn:nbn:se:kth:diva-180740 (URN)978-91-7595-844-6 (ISBN)
Public defence
2016-02-05, F3, Lindstedtsvägen 26, KTH, Stockholm, 09:00 (English)

QC 20160122

Available from: 2016-01-22 Created: 2016-01-22 Last updated: 2016-01-22Bibliographically approved

Open Access in DiVA