Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A data-driven approach for a chatbot usingtranscripts from a TV-series
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2014 (English)Independent thesis Advanced level (professional degree), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

This paper explores a data-driven approach for a chatbotwhere it utilises a database of transcripts from a TV-seriesin an attempt to hide its lack of linguistic knowledge and familiarity of the human language. A built-upon version of the naive implementation with rules prioritizing responses from the same scene to increase coherency is implementedand is compared to the original. Both versions of the chatbot shows some coherency for the individual instance but this diminishes in longer conversations. No significant difference can be found between the two versions.

Abstract [sv]

Denna rapport undersöker en datadriven metod för en chatbot där den använder en databas av repliker från en TV serie i ett försök att dölja sina bristande språkkunskaper. En utbyggd version av den naiva implementationen som har regler för att prioritera repliker från samma scen som föregående svar implementeras och jämförs med den ursprungliga. Båda versionerna av chatbotten uppvisar koherens för enskilda fall men detta förminskas i längre konversationer. Ingen signifikant skillnad mellan de två versionerna påvisas.

Place, publisher, year, edition, pages
2014.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-157635OAI: oai:DiVA.org:kth-157635DiVA: diva2:770763
Examiners
Available from: 2014-12-12 Created: 2014-12-11 Last updated: 2014-12-12Bibliographically approved

Open Access in DiVA

fulltext(359 kB)330 downloads
File information
File name FULLTEXT01.pdfFile size 359 kBChecksum SHA-512
658a4c40b95913e2f2d278f8dd42be41f8a1bd138118fcc8aee861d9ddde552f005e0588722eee43eb2bcfaa1f3c9c13a1ec62c103baf853271f77eb0a30376e
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 330 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 269 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf