Change search
ReferencesLink to record
Permanent link

Direct link
How Musical Instrumentation Affects Perceptual Identification of Musical Genres
KTH, School of Computer Science and Communication (CSC).
KTH, School of Computer Science and Communication (CSC).
2014 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

A listening experiment was conducted to investigate which musical instruments are the most important for defining certain musical genres. 66 participants genre classified a series of audio samples, with the same songs recurring both with full instrumentation and partial instrumentation. The report used the collected genre classifications to clarify therelationship between certain musical genres and song instrumentation. A numericalanalysis of the classifications, in the context of genre traditions and conventions, show that certain traditions hold true, while others do not. The most and least defining instrumentation for each genre was determined and discussed

Abstract [sv]

Ett lyssningsexperiment genomfördes för att undersöka vilka musikinstrument som är de mest centrala för att definiera en särskild musikgenre. 66 testpersoner fick klassificera ett antal ljudexpempel efter genre. Samma låtar återkom med både full och delvis instrumentering. Rapporten använde de resulterande genreklassificeringarna för attförtydliga sambandet mellan musikgenrerna och instrumentering. En numerisk analys avresultaten utfördes och analyserades i ett sammanhang av olika musikgenre traditioner. Det visade sig att vissa traditioner överenssstämmer med den numeriska analysen, medan andra traditioner inte gör det. Den mest och minst genre- definerande stämman beräknades och sammanställdes i en tabell.

Place, publisher, year, edition, pages
National Category
Computer and Information Science
URN: urn:nbn:se:kth:diva-157339OAI: diva2:769736
Available from: 2014-12-09 Created: 2014-12-09 Last updated: 2016-03-02Bibliographically approved

Open Access in DiVA

fulltext(1073 kB)121 downloads
File information
File name FULLTEXT01.pdfFile size 1073 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer and Information Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 121 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 176 hits
ReferencesLink to record
Permanent link

Direct link