CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt184",{id:"formSmash:upper:j_idt184",widgetVar:"widget_formSmash_upper_j_idt184",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt186_j_idt192",{id:"formSmash:upper:j_idt186:j_idt192",widgetVar:"widget_formSmash_upper_j_idt186_j_idt192",target:"formSmash:upper:j_idt186:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Rees algebras of modules and Quot schemes of pointsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)Licentiate thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH Royal Institute of Technology, 2014. , p. vii, 19
##### Series

TRITA-MAT-A ; 2014:17
##### National Category

Algebra and Logic Geometry
##### Research subject

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-156636ISBN: 978-91-7595-400-4 (print)OAI: oai:DiVA.org:kth-156636DiVA, id: diva2:769721
##### Presentation

2015-01-23, 3418, Lindstedtsvägen 25, Stockholm, 10:00 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt648",{id:"formSmash:j_idt648",widgetVar:"widget_formSmash_j_idt648",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt657",{id:"formSmash:j_idt657",widgetVar:"widget_formSmash_j_idt657",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt667",{id:"formSmash:j_idt667",widgetVar:"widget_formSmash_j_idt667",multiple:true});
##### Note

##### List of papers

This thesis consists of three articles. The first two concern a generalization of Rees algebras of ideals to modules. Paper A shows that the definition of the Rees algebra due to Eisenbud, Huneke and Ulrich has an equivalent, intrinsic, definition in terms of divided powers. In Paper B, we use coherent functors to describe properties of the Rees algebra. In particular, we show that the Rees algebra is induced by a canonical map of coherent functors.

In Paper C, we prove a generalization of Gotzmann's persistence theorem to finite modules. As a consequence, we show that the embedding of the Quot scheme of points into a Grassmannian is given by a single Fitting ideal.

QC 20141218

Available from: 2014-12-18 Created: 2014-12-01 Last updated: 2014-12-18Bibliographically approved1. An intrinsic definition of the Rees algebra of a module$(function(){PrimeFaces.cw("OverlayPanel","overlay767499",{id:"formSmash:j_idt723:0:j_idt737",widgetVar:"overlay767499",target:"formSmash:j_idt723:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. Rees algebras of modules and coherent functors$(function(){PrimeFaces.cw("OverlayPanel","overlay767503",{id:"formSmash:j_idt723:1:j_idt737",widgetVar:"overlay767503",target:"formSmash:j_idt723:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Gotzmann's persistence theorem for finite modules$(function(){PrimeFaces.cw("OverlayPanel","overlay767506",{id:"formSmash:j_idt723:2:j_idt737",widgetVar:"overlay767506",target:"formSmash:j_idt723:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1974",{id:"formSmash:j_idt1974",widgetVar:"widget_formSmash_j_idt1974",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt2027",{id:"formSmash:lower:j_idt2027",widgetVar:"widget_formSmash_lower_j_idt2027",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt2028_j_idt2030",{id:"formSmash:lower:j_idt2028:j_idt2030",widgetVar:"widget_formSmash_lower_j_idt2028_j_idt2030",target:"formSmash:lower:j_idt2028:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});