Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Biolubricants and Biolubrication
KTH, School of Chemical Science and Engineering (CHE), Chemistry, Surface and Corrosion Science.
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The main objective of this thesis work was to gain understanding of the principles of biolubrication, focusing on synergistic effects between biolubricants. To this end surface force and friction measurements were carried out by means of Atomic Force Microscopy, using hydrophilic and hydrophobic model surfaces in salt solutions of high ionic strength (≈ 150 mM) in presence of different biolubricants. There was also a need to gain information on the adsorbed layers formed by the biolubricants. This was achieved by using a range of methods such as Atomic Force Microscopy PeakForce imaging, Quartz Crystal Microbalance with Dissipation, Dynamic Light Scattering and X-Ray Reflectometry. By combining data from these techniques, detailed information about the adsorbed layers could be obtained.The biolubricants that were chosen for investigation were a phospholipid, hyaluronan, lubricin, and cartilage oligomeric matrix protein (COMP) that all exist in the synovial joint area. First the lubrication ability of these components alone was investigated, and then focus was turned to two pairs that are known or assumed to associate in the synovial area. Of the biolubricants that were investigated, it was only the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) that was found to be an efficient lubricant on its own. Deposited DPPC bilayers on silica surfaces were found to be able to provide very low friction coefficients (≈ 0.01) up to high pressures, ≈ 50 MPa. A higher load bearing capacity was found for DPPC in the liquid crystalline state compared to in the gel state.The first synergy pair that was explored was DPPC and hyaluronan, that is known to associate on the cartilage surface, and we also noticed association between hyaluronan and DPPC vesicles as well as with adsorbed DPPC bilayers. By combining these two components a lubrication performance similar to that of DPPC alone could be achieved, even though the friction coefficient in presence of hyaluronan was found to be slightly higher. The synergy here is thus not in form of an increased performance, but rather that the presence of hyaluronan allows a large amount of the phospholipid lubricant to accumulate where it is needed, i.e. on the sliding surfaces.The other synergy pair was lubricin and COMP that recently has been shown to be co-localized on the cartilage surface, and thus suggested to associate with each other. Lubricin, as a single component, provided poor lubrication of PMMA surfaces, which we utilized as model hydrophobic surfaces. However, if COMP first was allowed to coat the surface, and then lubricin was added a low friction coefficient (≈ 0.03) was found. In this case the synergy arises from COMP facilitating strong anchoring of lubricin to the surface in conformations that provide good lubrication performance.

Abstract [sv]

Huvudsyftet med det här avhandlingsarbetet var att öka förståelsen för den låga friktion som finns i vissa biologiska system, med fokus på synergistiska effekter mellan de smörjande molekylerna. För detta ändamål studerades ytkrafter och friktion med hjälp av atomkraftsmikroskopi. Mätningarna utfördes med hydrofila och hydrofoba modellytor i lösningar med hög salthalt (≈ 150 mM) i närvaro av smörjande biomolekyler. Det var också nödvändigt att få information om de adsorberade skikten av biomolekyler. Det åstadkoms med hjälp av en rad tekniker så som AFM PeakForce avbildning, kvartskristallmikrovåg, dynamisk ljusspridning och röntgen reflektometri. Genom att kombinera data från dessa tekniker erhölls detaljerad information om de smörjande skikten.De smörjande biomolekyler som valdes ut för studierna var en fosfolipid, hyaluronan, lubricin, and cartilage oligomeric matrix protein (COMP) vilka alla finns i synovialledsområdet. Först undersöktes den smörjande förmågan hos dessa komponenter var för sig, och sedan fokuserade vi på två par av biomolekyler som man vet eller antar bildar associationsstrukturer i synovialleder. Av de enskilda biomolekyler som undersöktes var det endast fosfolipiden 1,2-dipalmitoyl-sn-glycero-3-fosfokoline (DPPC) som visade sig vara en effektivt smörjande molekyl. Deponerade biskikt av DPPC på silikaytor gav upphov till mycket låga friktionskoefficienter (≈ 0.01) upp till höga pålagda tryck, ≈ 50 MPa. DPPC bilager i flytande kristallin fas visade sig ha högre lastbärande förmåga än DPPC bilager i geltillstånd.Det första synergistiska par som undersöktes var DPPC och hyaluronan vilka man vet associerar på broskytan, och vi visade att hyaluronan associerar med såväl DPPC vesiklar som med DPPC bilager. Genom att kombinera dessa två komponenter uppmättes en smörjande förmåga som var jämförbar med den som DPPC ensam uppvisar. Även om friktionskoefficienten var något högre i närvaro av hyaluronan. Synergieffekten här består inte av en bättre smörjande förmåga, utan istället gör närvaron av hyaluronan att de smörjande fosfolipiderna kan ansamlas i stora mängder där de behövs, dvs. på de glidande ytorna.Det andra synergiparet var lubricin och COMP vilka nyligen har visats vara lokaliserade på samma platser på broskytan, vilket tyder på att de associerar med varandra. På egen hand var lubricins smörjande förmåga av PMMA, våra hydrofoba modellytor, dålig. Emellertid, om COMP först adsorberades på PMMA och sedan lubricin tillsattes uppmättes en låg friktionskoefficient (≈ 0.03). I det här fallet består synergin av att COMP möjliggör en stark inbindning till ytan av lubricin i konformationer som ger god smörjande förmåga.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. , vi, 62 p.
Series
TRITA-CHE-Report, ISSN 1654-1081 ; 2014:56
Keyword [en]
Hyaluronan, Phospholipid, Lubricin, Cartilage Oligomeric Matrix Protein, COMP, Adsorption, Surface Force, Friction, Biolubrication, Boundary Lubrication, Load Bearing Capacity, Synergistic Effects, DLS, QCM-D, AFM.
Keyword [sv]
Hyaluronan, Fosfolipid, Lubricin, Cartilage Oligomeric Matrix Protein, COMP, Adsorption, Ytkraft, Friktion, Biologisk smörjning, Gränsskiktssmörjning, Lastbärande förmåga, Synergieffekter, DLS, QCM-D, AFM.
National Category
Physical Chemistry Polymer Chemistry
Research subject
Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-156632ISBN: 978-91-7595-348-9 (print)OAI: oai:DiVA.org:kth-156632DiVA: diva2:767538
Public defence
2014-12-16, E3, Osquarsbacke 14, KTH, Stockholm, 10:00 (English)
Opponent
Supervisors
Projects
Stiftelsen för strategisk forskning - SSF
Note

QC 20141202

Available from: 2014-12-02 Created: 2014-12-01 Last updated: 2014-12-02Bibliographically approved
List of papers
1. Hyaluronan and phospholipids in boundary lubrication
Open this publication in new window or tab >>Hyaluronan and phospholipids in boundary lubrication
Show others...
2012 (English)In: Soft Matter, ISSN 1744-683X, E-ISSN 1744-6848, Vol. 8, no 40, 10241-10244 p.Article in journal (Refereed) Published
Abstract [en]

Hyaluronan has been found to play an important role in boundary lubrication in joints, but model experiments have shown that free hyaluronan is reluctant to stay between surfaces. We show that hyaluronan, when assisted by a phospholipid bilayer, can act as a boundary lubricant, even at pressures well above those leading to breakdown of cartilage.

Keyword
Boundary lubricants, Boundary lubrications, Hyaluronan, Model experiments, Phospholipid bilayer, Chemistry, Materials science, Phospholipids
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-104950 (URN)10.1039/c2sm26615f (DOI)000310829200006 ()2-s2.0-84866994734 (Scopus ID)
Funder
Swedish Foundation for Strategic Research Vinnova
Note

QC 20121119

Available from: 2012-11-19 Created: 2012-11-14 Last updated: 2017-12-07Bibliographically approved
2. Hyaluronan and Phospholipid Association in Biolubrication
Open this publication in new window or tab >>Hyaluronan and Phospholipid Association in Biolubrication
2013 (English)In: Biomacromolecules, ISSN 1525-7797, E-ISSN 1526-4602, Vol. 14, no 12, 4198-4206 p.Article in journal (Refereed) Published
Abstract [en]

It is becoming increasingly clear that the outstanding lubrication of synovial joints is achieved by a sophisticated hierarchical structure of cartilage combined with synergistic actions of surface-active components present in the synovial fluid. In this work we focus on the association of two components of the synovial fluid, hyaluronan and dipalmitoyl phosphatidyl choline (DPPC), in bulk solution and at interfaces. We demonstrate that hyaluronan associates with DPPC vesicles and adsorbs to supported DPPC bilayers. The association structures formed at the interface are sufficiently stable to allow sequential adsorption of DPPC and hyaluronan, whereby promoting the formation of thick composite layers of these two components. The lubricating ability of such composite layers was probed by the AFM colloidal probe technique and found to be very favorable with low friction coefficients and high load bearing capacity. With DPPC as the last adsorbed component, a friction coefficient of 0.01 was found up to pressures significantly above what is encountered in healthy synovial joints. Hyaluronan as the last added component increases the friction coefficient to 0.03 and decreases the load bearing capacity somewhat (but still above what is needed in the synovial joint). Our data demonstrate that self-assembly structures formed by hyaluronan and phospholipids at interfaces are efficient aqueous lubricants, and it seems plausible that such self-assembly structures contribute to the exceptional lubrication of synovial joints.

Keyword
Supported Lipid-Bilayers, Quartz-Crystal Microbalance, Surface-Active Phospholipids, Articular-Cartilage, Boundary Lubrication, Synovial-Fluid, Aqueous-Solutions, Forces Apparatus, Amorphous Layer, Acid
National Category
Biochemistry and Molecular Biology Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-139285 (URN)10.1021/bm400947v (DOI)000328240400006 ()2-s2.0-84890402874 (Scopus ID)
Funder
Swedish Foundation for Strategic Research Vinnova
Note

QC 20140108

Available from: 2014-01-08 Created: 2014-01-08 Last updated: 2017-12-06Bibliographically approved
3. Adsorption and Friction Performance of Layers formed from Mixed Hyaluronan -Dipalmitoylphosphatidylcholine (DPPC) Vesicle Solutions
Open this publication in new window or tab >>Adsorption and Friction Performance of Layers formed from Mixed Hyaluronan -Dipalmitoylphosphatidylcholine (DPPC) Vesicle Solutions
(English)Manuscript (preprint) (Other academic)
National Category
Natural Sciences
Research subject
Materials Science and Engineering; Chemistry
Identifiers
urn:nbn:se:kth:diva-156651 (URN)
Note

QS 2014

Available from: 2014-12-02 Created: 2014-12-02 Last updated: 2016-02-12Bibliographically approved
4. The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: Structure and lubrication performance
Open this publication in new window or tab >>The effect of temperature on supported dipalmitoylphosphatidylcholine (DPPC) bilayers: Structure and lubrication performance
Show others...
2015 (English)In: Journal of Colloid and Interface Science, ISSN 0021-9797, E-ISSN 1095-7103, Vol. 445, 84-92 p.Article in journal (Refereed) Published
Abstract [en]

Phospholipids fulfill an important role in joint lubrication. They, together with hyaluronan and glycoproteins, are the biolubricants that sustain low friction between cartilage surfaces bathed in synovial fluid. In this work we have investigated how the friction force and load bearing capacity of 1,2-dipalmitoyl-snglycero-3-phosphocholine (DPPC) bilayers on silica surfaces are affected by temperature, covering the temperature range 25-52 degrees C. Friction forces have been determined utilizing the AFM colloidal probe technique, which showed that DPPC bilayers are able to provide low friction forces over the whole temperature interval. However, the load bearing capacity is improved at higher temperatures. We interpret this finding as being a consequence of lower rigidity and higher self-healing capacity of the DPPC bilayer in the liquid disordered state compared to the gel state. The corresponding structure of solid supported DPPC bilayers at the silica-liquid interface has been followed using X-ray reflectivity measurements, which suggests that the DPPC bilayer is in the gel phase at 25 degrees C and 39 degrees C and in the liquid disordered state at 55 degrees C. Well-defined bilayer structures were observed for both phases. The deposited DPPC bilayers were also imaged using AFM PealcForce Tapping mode, and these measurements indicated a less homogeneous layer at temperatures below 37 degrees C.

Keyword
Phospholipid bilayer, DPPC, X-ray reflectivity, AFM, Surface forces, Friction, Lubrication, Load bearing capacity
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-156653 (URN)10.1016/j.jcis.2014.12.042 (DOI)000350006700011 ()25596372 (PubMedID)2-s2.0-84921024640 (Scopus ID)
Funder
Swedish Research Council, B0330901
Note

QC 20150409. Updated from manuscript to article in journal.

Available from: 2014-12-02 Created: 2014-12-02 Last updated: 2017-12-05Bibliographically approved
5. Molecular synergy in biolubrication: The role of cartilage oligomeric matrix protein (COMP) in surface-structuring of lubricin
Open this publication in new window or tab >>Molecular synergy in biolubrication: The role of cartilage oligomeric matrix protein (COMP) in surface-structuring of lubricin
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Chemical Sciences
Identifiers
urn:nbn:se:kth:diva-156655 (URN)
Note

QCR 20170221

Available from: 2014-12-02 Created: 2014-12-02 Last updated: 2017-02-21Bibliographically approved

Open Access in DiVA

Thesis(2128 kB)