Change search
ReferencesLink to record
Permanent link

Direct link
System Identification of an Engine-load Setup Using Grey-box Model
Linköping University, Department of Electrical Engineering, Vehicular Systems. Linköping University, The Institute of Technology.
2014 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

With the demand for more comfortable cars and reduced emissions, there is an increasing focus on model-based system engineering. Therefore, developing accurate vehicle models has become significantly important. The powertrain system, which transfers the engine torque to the driving wheels, is one of the most important parts of a vehicle. Having a reliable methodology, for modeling and parameter estimation of a powertrain structure, helps predict different kinds of behaviors such as torsional vibration which is beneficial for a number of applications in automotive industry. Examples of such cases are ride quality evaluation and model-based fault detection.

This thesis uses the knowledge from the system identification field, which introduces the methods of building mathematical models for dynamical systems based on experimental data, to model the torsional vibration of an engine-load setup. It is a subsystem of the vehicular powertrain and the main source of vibration is the engine fluctuating torque. The challenges are handling a more complicated model structure with a greater number of unknown parameters as well as showing the importance of data information for acquiring better identification performance. Since the engine-load setup is modeled physically here, its state-space equations are available and a grey-box modeling approach can be applied in which the well-known prediction error method is used toestimate the unknown physical parameters. Moreover, a structural  identifiability analysis is performed which shows that all of the model parameters are identifiable assuming informative input.

Two main aspects are considered to present an appropriate modeling methodology. The first is simplification of the model structure according to frequency range of interest. This is achieved by performing modal shape analysis to obtain how many degrees-of-freedom are necessary at different frequency ranges. The results show that a 7 degrees-of-freedom model can be simplified to a 2 degrees-offreedom structure and still have the desired performance for a specific application such as misfire detection.

The second aspect concerns using an appropriate data set, which has the required information for estimation of the unknown parameters. By analyzing the simulation data from a known system, it is shown that the parameters of the 2 degrees-of-freedom model can not be estimated accurately using measurements from a normal combustion data set. However, all the parameters except damping coefficient converge to their true values by using a data set which has misfire in the input torque from the engine. A high estimation variance plus flat loss function indicate that the damping coefficient has no significant influence on the model output and consequently can not be estimated correctly using the available measurements. Thus, to increase the accuracy of the results during estimation on real data, the damping coefficient(s) is assumed to be known. Both the 2 and 7 degrees-of-freedom models are validated against a fresh data set and it is shown that the simulated output captures the important parts of the actual system behavior depending on the application of interest.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. , 89 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1698
National Category
Mechanical Engineering
URN: urn:nbn:se:liu:diva-112445DOI: 10.3384/lic.diva-112445ISBN: 978-91-7519-165-2 (print)OAI: diva2:766425
2015-01-21, Visionen, B-huset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)

The series name Linköping studies in science and technology Licentiate Thesis is incorrect. Correct series name is Linköping studies in science and technology. Thesis.

Available from: 2014-11-27 Created: 2014-11-27 Last updated: 2014-12-02Bibliographically approved

Open Access in DiVA

System Identification of an Engine-load Setup Using Grey-box Model(3317 kB)641 downloads
File information
File name FULLTEXT01.pdfFile size 3317 kBChecksum SHA-512
Type fulltextMimetype application/pdf
omslag(36 kB)8 downloads
File information
File name COVER01.pdfFile size 36 kBChecksum SHA-512
Type coverMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Nickmehr, Neda
By organisation
Vehicular SystemsThe Institute of Technology
Mechanical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 641 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 363 hits
ReferencesLink to record
Permanent link

Direct link