Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Formal Verification of Secure User Mode Device Execution with DMA
KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS.ORCID iD: 0000-0003-3434-5640
KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS.ORCID iD: 0000-0001-5432-6442
2014 (English)In: Hardware and Software: Verification and Testing / [ed] Eran Yahav, Springer Publishing Company, 2014, 236-251 p.Conference paper, Published paper (Refereed)
Abstract [en]

Separation between processes on top of an operating systemor between guests in a virtualized environment is essential for establish-ing security on modern platforms. A key requirement of the underlyinghardware is the ability to support multiple partitions executing on theshared hardware without undue interference. For modern processor archi-tectures - with hardware support for memory management, several modesof operation and I/O interfaces - this is a delicate issue requiring deepanalysis at both instruction set and processor implementation level. In afirst attempt to rigorously answer this type of questions we introducedin previous work an information flow analysis of user program executionon an ARMv7 platform with hardware supported memory protection,but without I/O. The analysis was performed as a semi-automatic proofsearch procedure on top of an ARMv7 ISA model implemented in theCambridge HOL4 theorem prover by Fox et al. The restricted platformfunctionality, however, makes the analysis of limited practical value. Inthis paper we add support for devices, including DMA, to the analy-sis. To this end, we propose an approach to device modeling based onthe idea of executing devices nondeterministically in parallel with the(single-core) deterministic processor, covering a fine granularity of inter-actions between the model components. Based on this model and tak-ing the ARMv7 ISA as an example, we provide HOL4 proofs of severalnoninterference-oriented isolation properties for a partition executing inthe presence of devices which potentially use DMA or interrupts.

Place, publisher, year, edition, pages
Springer Publishing Company, 2014. 236-251 p.
Series
Lecture Notes in Computer Science, ISSN 0302-9743 ; 8855
Keyword [en]
peripheral devices, DMA, separation, isolation, user mode execu- tion, ARM, formal hardware/software co-verification, theorem proving, HOL4
National Category
Computer Science
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-155718DOI: 10.1007/978-3-319-13338-6_18Scopus ID: 2-s2.0-84921419001ISBN: 978-3-319-13337-9 (print)ISBN: 978-3-319-13338-6 (print)OAI: oai:DiVA.org:kth-155718DiVA: diva2:762165
Conference
10th International Haifa Verification Conference, HVC 2014
Projects
PROSPER
Funder
Swedish Foundation for Strategic Research
Note

QC 20141117

Available from: 2014-11-10 Created: 2014-11-10 Last updated: 2016-09-12Bibliographically approved
In thesis
1. No Hypervisor Is an Island: System-wide Isolation Guarantees for Low Level Code
Open this publication in new window or tab >>No Hypervisor Is an Island: System-wide Isolation Guarantees for Low Level Code
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The times when malware was mostly written by curious teenagers are long gone. Nowadays, threats come from criminals, competitors, and government agencies. Some of them are very skilled and very targeted in their attacks. At the same time, our devices – for instance mobile phones and TVs – have become more complex, connected, and open for the execution of third-party software. Operating systems should separate untrusted software from confidential data and critical services. But their vulnerabilities often allow malware to break the separation and isolation they are designed to provide. To strengthen protection of select assets, security research has started to create complementary machinery such as security hypervisors and separation kernels, whose sole task is separation and isolation. The reduced size of these solutions allows for thorough inspection, both manual and automated. In some cases, formal methods are applied to create mathematical proofs on the security of these systems.

The actual isolation solutions themselves are carefully analyzed and included software is often even verified on binary level. The role of other software and hardware for the overall system security has received less attention so far. The subject of this thesis is to shed light on these aspects, mainly on (i) unprivileged third-party code and its ability to influence security, (ii) peripheral devices with direct access to memory, and (iii) boot code and how we can selectively enable and disable isolation services without compromising security.

The papers included in this thesis are both design and verification oriented, however, with an emphasis on the analysis of instruction set architectures. With the help of a theorem prover, we implemented various types of machinery for the automated information flow analysis of several processor architectures. The analysis is guaranteed to be both sound and accurate.

Abstract [sv]

Förr skrevs skadlig mjukvara mest av nyfikna tonåringar. Idag är våra datorer under ständig hot från statliga organisationer, kriminella grupper, och kanske till och med våra affärskonkurrenter. Vissa besitter stor kompetens och kan utföra fokuserade attacker. Samtidigt har tekniken runtomkring oss (såsom mobiltelefoner och tv-apparater) blivit mer komplex, uppkopplad och öppen för att exekvera mjukvara från tredje part.

Operativsystem borde egentligen isolera känslig data och kritiska tjänster från mjukvara som inte är trovärdig. Men deras sårbarheter gör det oftast möjligt för skadlig mjukvara att ta sig förbi operativsystemens säkerhetsmekanismer. Detta har lett till utveckling av kompletterande verktyg vars enda funktion är att förbättra isolering av utvalda känsliga resurser. Speciella virtualiseringsmjukvaror och separationskärnor är exempel på sådana verktyg. Eftersom sådana lösningar kan utvecklas med relativt liten källkod, är det möjligt att analysera dem noggrant, både manuellt och automatiskt. I några fall används formella metoder för att generera matematiska bevis på att systemet är säkert.

Själva isoleringsmjukvaran är oftast utförligt verifierad, ibland till och med på assemblernivå. Dock så har andra komponenters påverkan på systemets säkerhet hittills fått mindre uppmärksamhet, både när det gäller hårdvara och annan mjukvara. Den här avhandlingen försöker belysa dessa aspekter, huvudsakligen (i) oprivilegierad kod från tredje part och hur den kan påverka säkerheten, (ii) periferienheter med direkt tillgång till minnet och (iii) startkoden, samt hur man kan aktivera och deaktivera isolationstjänster på ett säkert sätt utan att starta om systemet.

Avhandlingen är baserad på sex tidigare publikationer som handlar om både design- och verifikationsaspekter, men mest om säkerhetsanalys av instruktionsuppsättningar. Baserat på en teorembevisare har vi utvecklat olika verktyg för den automatiska informationsflödesanalysen av processorer. Vi har använt dessa verktyg för att tydliggöra vilka register oprivilegierad mjukvara har tillgång till på ARM- och MIPS-maskiner. Denna analys är garanterad att vara både korrekt och precis. Så vitt vi vet är vi de första som har publicerat en lösning för automatisk analys och bevis av informationsflödesegenskaper i standardinstruktionsuppsättningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2016. 180 p.
Series
TRITA-CSC-A, ISSN 1653-5723 ; 2016:22
Series
SICS Dissertation Series, ISSN 1101-1335 ; 75
Keyword
Platform Security, Hypervisor, Formal Verification, Theorem Proving, HOL4, DMA, Peripheral Devices, Instruction Set Architectures, ISA, Information Flow, Boot
National Category
Computer Science
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-192466 (URN)978-91-7729-104-6 (ISBN)
Public defence
2016-10-10, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Projects
PROSPERHASPOC
Funder
Swedish Foundation for Strategic Research VINNOVA
Note

QC 20160919

Available from: 2016-09-19 Created: 2016-09-12 Last updated: 2017-11-24Bibliographically approved

Open Access in DiVA

schwarz_dam_verification_DMA_authorversion.pdf(1080 kB)362 downloads
File information
File name FULLTEXT01.pdfFile size 1080 kBChecksum SHA-512
959feec52ee20812372bc8b50c80d6c44124c1e2aa6f8f4631b56b9a280cc467623b453207482de5b955c6a0070f0d1f9e11494472a9abf98d6db569dceada75
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusThe final publication is available at www.springerlink.com

Authority records BETA

Schwarz, OliverDam, Mads

Search in DiVA

By author/editor
Schwarz, OliverDam, Mads
By organisation
Theoretical Computer Science, TCS
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 362 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 249 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf