Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of kaolin addition on the dynamics of oxygen mass transport in polyvinyl alcohol dispersion coatings
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
Stora Enso.
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
Karlstad University, Faculty of Technology and Science, Department of Chemical Engineering. Karlstad University, Faculty of Technology and Science, Paper Surface Centre.ORCID iD: 0000-0002-1256-1708
Show others and affiliations
2015 (English)In: Nordic Pulp & Paper Research Journal, ISSN 0283-2631, E-ISSN 2000-0669, Vol. 30, no 3, p. 385-392Article in journal (Refereed) Published
Abstract [en]

The permeability of dispersion barriers produced from polyvinyl alcohol (PVOH) and kaolin clay blends coated onto polymeric supports has been studied by employing two different measurement methods: the oxygen transmission rate (OTR) and the ambient oxygen ingress rate (AOIR). Coatings with different thicknesses and kaolin contents were studied. Structural information of the dispersion-barrier coatings was obtained by Fourier transform infrared spectroscopy (FTIR) spectroscopy and scanning electron microscopy (SEM). These results showed that the kaolin content influences both the orientation of the kaolin and the degree of crystallinity of the PVOH coating. Increased kaolin content increased the alignment of the kaolin platelets to the basal plane of the coating. Higher kaolin content was accompanied by higher degree of crystallinity of the PVOH. The barrier thickness proved to be less important in the early stages of the mass transport process, whereas it had a significant influence on the steady-state permeability. The results from this study demonstrate the need for better understanding of how permeability is influenced by (chemical and physical) structure.

Place, publisher, year, edition, pages
2015. Vol. 30, no 3, p. 385-392
Keywords [en]
Barrier coating, Dynamic mass transport, Kaolin, Permeability, Polyvinyl alcohol
National Category
Chemical Engineering
Research subject
Chemical Engineering
Identifiers
URN: urn:nbn:se:kau:diva-34457DOI: 10.3183/NPPRJ-2015-30-03-p385-392ISI: 000361615500002OAI: oai:DiVA.org:kau-34457DiVA, id: diva2:757421
Funder
Knowledge Foundation
Note

Ingår i lic.uppsats Structural Studies and Modelling of Oxygen Transport in Barrier Materials for Food Packaging som manuskript med titeln: Influence of kaolin addition in polyvinyl alcohol dispersion coating on the dynamics of oxygen mass transport.

Available from: 2014-10-22 Created: 2014-10-22 Last updated: 2017-12-06Bibliographically approved
In thesis
1. Structural Studies and Modelling of Oxygen Transport in Barrier Materials for Food Packaging
Open this publication in new window or tab >>Structural Studies and Modelling of Oxygen Transport in Barrier Materials for Food Packaging
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The requirements of food packages are to ensure food safety and quality, to minimize spoilage, and to provide an easy way to store and handle food. To meet these demands for fibre-based food packages, barrier coatings are generally used to regulate the amount of gases entering a package, as some gases are detrimental to food quality. Oxygen, for example, initiates lipid oxidation in fatty foods. Bakery products may also be sensitive to oxygen.

This thesis focused on mass transport of oxygen in order to gain deeper knowledge in the performance of barrier coatings and to develop means to optimize the performance of barrier coatings. This experimental study along with computer modelling characterized the structure of barrier materials with respect to the mass transport process.This project was performed as part of the multidisciplinary industrial graduate school VIPP (www.kau.se/en/vipp) - Values Created in Fibre Based Processes and Products – at Karlstad University, with the financial support from the Knowledge Foundation, Sweden, and Stora Enso.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2014. p. 45
Series
Karlstad University Studies, ISSN 1403-8099 ; 2014:64
Keywords
Barrier coating; Permeability; Dynamic Mass Transport; Modeling; Diffusion; Polymer; Dispersion; Kaolin
National Category
Polymer Technologies Chemical Engineering
Research subject
Materials Science
Identifiers
urn:nbn:se:kau:diva-34468 (URN)978-91-7063-604-2 (ISBN)
Presentation
2014-12-11, Eva Eriksson, 21A 342, 10:15 (Swedish)
Opponent
Supervisors
Note

Artikel 2 "The influence of clay orientation..." ingick som manuskript i avhandlingen, då med titeln: "Influence of clay orientation in dispersion barrier coatings on oxygen permeation". Nu publicerad.

Available from: 2014-11-20 Created: 2014-10-23 Last updated: 2017-12-05Bibliographically approved
2. Structure-Performance Relations of Oxygen Barriers for Food Packaging
Open this publication in new window or tab >>Structure-Performance Relations of Oxygen Barriers for Food Packaging
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Food packaging should ensure the safety and quality of food, minimize spoilage and provide an easy way of storing and handling it. Barrier coatings are generally used to meet the demands placed on fibre-based food packages, as these have the ability to regulate the amount of gases that can enter them. Some gases are detrimental to food quality: oxygen, for example, initiates lipid oxidation in fatty foods. Using both experimental data and computer modelling, this thesis explains some aspects of how the structure of barrier coatings influences the mass transport of oxygen with the aim of obtaining essential knowledge that can be used to optimize the performance of barriers.

Barrier coatings are produced from polyvinyl alcohol and kaolin blends that are coated onto a polymeric support. The chemical and physical structures of these barriers were characterized according to their influence on permeability in various climates. At a low concentration of kaolin, the crystallinity of polyvinyl alcohol decreased; in the thinner films, the kaolin particles were orientated in the basal plane of the barrier coating. The experimental results indicated a complex interplay between the polymer and the filler with respect to permeability.

A computer model for permeability incorporating theories for the filled polymeric layer to include the polymer crystallinity, addition of filler, filler aspect ratio and surrounding moisture was developed. The model shows that mass transport was affected by the aspect ratio of the clay in combination with the clay concentration, as well as the polymer crystallinity. The combined model agreed with the experiments, showing that it is possible to combine different theories into one model that can be used to predict the mass transport.

Four barrier coatings: polyethylene, ethylene vinyl alcohol + kaolin, latex + kaolin and starch were evaluated using the parameters of greenhouse gas emissions and product costs. After the production of the barrier material, the coating process and the end-of-life handling scenarios were analysed, it emerged that starch had the lowest environmental impact and latex + kaolin had the highest.

Abstract [en]

Food packaging is required to secure the safety and quality of food, as well as minimize spoilage and simplify handling. Barrier coatings are generally used to meet the demands placed on fibre-based food packages, as these have the ability to regulate the amount of gases that can enter them. Some gases are detrimental to food quality: oxygen, for example, initiates lipid oxidation in fatty foods.

This thesis focuses on the mass transport of oxygen in order to gain deeper knowledge of, and thereby optimise, the performance of barrier coatings. This experimental study, together with computer modelling, characterized the structure of barrier materials with respect to the mass transport process. The performance of the barriers was evaluated based on the parameters of environmental impact and product costs. As the long-term aim is to use non-petroleum-based barrier coatings for packaging, these should be evaluated by assessing the properties of the material in question, its functionality and its environmental impact to provide more insight into which materials are desirable as well as to develop technology.

The results from this study indicate that several parameters (the orientation, concentration and aspect ratio of the clay and the polymer crystallinity) influence the properties of a barrier. Using this knowledge, researchers and food packaging engineers can work toward improving and customising renewable barriers.

Place, publisher, year, edition, pages
Karlstad: Karlstads universitet, 2017. p. 100
Series
Karlstad University Studies, ISSN 1403-8099 ; 2017:3
Keywords
Barrier coating, Permeability, Dynamic Mass Transport, Modelling, Diffusion, Polymer, Dispersion, Kaolin, LCA, Starch, Hemicellulose
National Category
Polymer Technologies Textile, Rubber and Polymeric Materials Computational Mathematics Food Engineering Composite Science and Engineering Paper, Pulp and Fiber Technology
Research subject
Materials Science
Identifiers
urn:nbn:se:kau:diva-47496 (URN)978-91-7063-738-4 (ISBN)978-91-7063-739-1 (ISBN)
Public defence
2017-02-10, Eva Eriksson, 21A342, Karlstad, 10:00 (English)
Opponent
Supervisors
Projects
VIPP
Funder
Knowledge Foundation, 20100268Stora Enso
Available from: 2017-01-24 Created: 2016-12-13 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

fulltext(781 kB)60 downloads
File information
File name FULLTEXT01.pdfFile size 781 kBChecksum SHA-512
969a8cc48507798fa6482123ecc9231bbbb564a9d26f8abfd9c34d7aed3c9ddd9925fa8595fea21255c58889cbea6b856f4671751e119c6a383ee8df688252cf
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Nyflött, ÅsaGunilla, CarlssonJärnström, LarsLestelius, MagnusMoons, Ellen
By organisation
Department of Engineering and Chemical SciencesDepartment of Chemical EngineeringPaper Surface CentrePaper Surface CentreMaterials ScienceDepartment of Physics and Electrical Engineering
In the same journal
Nordic Pulp & Paper Research Journal
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 60 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 467 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf