Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Combined Effects of Moisture and Temperature on the Mechanical Response of Paper
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). KTH, School of Engineering Sciences (SCI), Centres, VinnExcellence Center BiMaC Innovation. KTH, School of Chemical Science and Engineering (CHE), Centres, Biofibre Materials Centre, BiMaC.ORCID iD: 0000-0001-7657-3794
KTH, School of Engineering Sciences (SCI), Solid Mechanics (Dept.). (BiMaC Innovation)ORCID iD: 0000-0001-8699-7910
2014 (English)In: Experimental mechanics, ISSN 0014-4851, E-ISSN 1741-2765, Vol. 54, no 8, 1329-1341 p.Article in journal (Refereed) Published
Abstract [en]

To model advanced 3-D forming strategies for paper materials, the effects of environmental conditions on the mechanical behavior must be quantitatively and qualitatively understood. A tensile test method has been created, verified, and implemented to test paper at various moisture content and temperature levels. Testing results for one type of paper for moisture contents from 6.9 to 13.8 percent and temperatures from 23 to 168 degrees Celsius are presented and discussed. Coupled moisture and temperature effects have been discovered for maximum stress. Uncoupled effects have been discovered for elastic modulus, tangent modulus, hardening modulus, strain at break, tensile energy absorption (TEA), and approximate plastic strain. A hyperbolic tangent function is also utilized which captures the entire one-dimensional stress-strain response of paper. The effects of moisture and temperature on the three coefficients in the hyperbolic tangent function may be assumed to be uncoupled, which may simplify the development of moisture- and temperature-dependent constitutive models. All parameters were affected by both moisture and temperature with the exception of TEA, which was found to only be significantly dependent on temperature.

Place, publisher, year, edition, pages
Springer-Verlag New York, 2014. Vol. 54, no 8, 1329-1341 p.
Keyword [en]
Moisture, Temperature, Elastic properties, Plastic properties, Forming, Paper
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-154368DOI: 10.1007/s11340-014-9898-7ISI: 000341812900003Scopus ID: 2-s2.0-84907704336OAI: oai:DiVA.org:kth-154368DiVA: diva2:756953
Note

QC 20141020

Available from: 2014-10-20 Created: 2014-10-20 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
Open this publication in new window or tab >>Development of Finite Element Models for 3-D Forming Processes of Paper and Paperboard
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Paper materials have a long history of use in packaging products, although traditional paper-based packaging is limited in its shape and design. In order to enable more advanced paper-based packaging, various 3-D forming processes for paper materials have been studied. Since 3-D forming processes typically include the application of moisture and/or temperature, the effects of moisture and temperature on the mechanical response of paper have also been investigated.

In Paper A, an experimental study of the combined effects of moisture and temperature on the uniaxial mechanical properties of paper was conducted. These experiments provided new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. These experiments also provided the framework from which the effects of moisture and temperature were modelled in Paper C.

In Paper B, an explicit finite element model of the paperboard deep-drawing process was developed. An orthotropic material model with in-plane quadrant hardening was developed and verified for paper. The simulation results matched the trends from experimental deep-drawing up to when micro-scale wrinkling occured. Since most experimental failures occur prior to wrinkling, this model provided quantitative understanding of failure in the paperboard deep-drawing process.

In Paper C, an explicit finite element model of paper hydroforming, utilizing the same material model for paper materials as in Paper B, was developed and verified. The simulation results matched well with experimental results, and a parametric study with the finite element model produced quantitative understanding of the hydroforming process for paper materials. Additionally, drying was identified as an important phenomenon for determining the extent of formability of paper materials.

Abstract [sv]

Papper har länge använts som förpackningsmaterial men traditionella pappers- och kartongförpackningar är begränsade i form och design. Olika 3-D formnings processor har studerats för att möjliggöra mer avancerade pappersbaserade förpackningar. Effekterna av fukt och temperatur på pappers mekaniska egenskaper har också undersökts eftersom fukt och temperatur har stor betydelse för slutresultatet i 3-D formningsprocesser.

I Artikel A har den kombinerade effekten av fukt och temperatur på de uniaxiella mekaniska egenskaperna av papper undersökts experimentellt. Dessa experiment visar hur fukt och temperatur påverkar både elastiska och plastiska egenskaper hos papper samt ligger till grund för modelleringen av inverkan av fukt och temperatur i Artikel C.

I Artikel B har en explicit finita element modell för djupdragning av kartong utvecklas. En ortotropisk materialmodell baserad på en rektangulär flytyta har utvecklats och verifierats för kartong. Simuleringen följde trenderna i experimenten fram till den punkt där mikroskopiska rynkor bildas. Resultaten från analyserna med modellen ger kvantitativ förståelse för materialbrott i djupdragningsprocessen eftersom de flesta experimentella materialbrott inträffar innan mikroskopiska rynkor bildas.

I Artikel C har ett explicit finita element modell av hydroformning av papper baserad på materialmodellen från Paper B utvecklats och verifierats mot experimentell hydroformning av papper. En parameterstudie med finitaelement-modellen producerade kvantitativ förståelse för hydroformningsprocessen för papper. Dessutom identifieras torkning som ett viktigt fenomen för att fastställa graden av formbarheten för pappersmaterial.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2015. 25 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 576
Keyword
3-D forming, constitutive model, moisture, temperature, hydroforming, deep drawing, 3-D formning, finitaelement, konstitutiv modell, fukt, temperatur, hydroformning, djup dragning
National Category
Paper, Pulp and Fiber Technology
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-173009 (URN)978-91-7595-670-1 (ISBN)
Presentation
2015-09-24, Hållfasthetsläras Seminarierummet, Teknikringen 8D, KTH, Stockholm, 12:15 (English)
Opponent
Supervisors
Note

QC 20150907

Available from: 2015-09-07 Created: 2015-09-07 Last updated: 2015-09-07Bibliographically approved
2. 3-D Forming of Paper Materials
Open this publication in new window or tab >>3-D Forming of Paper Materials
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Paper materials have a long history of use as a packaging material, although traditional paper-based packaging is limited in its shape, complexity, and design. In order to better understand the deformation and failure mechanisms during 3-D forming, two experimental studies of paper materials have been conducted. Furthermore, constitutive modeling combined with explicit finite element modeling have been validated against numerous experimental setups and utilized to develop further understanding of 3-D forming processes.

Two experimental studies were necessary to further investigate and model the 3-D formability of paper materials. The combined effect of moisture and temperature on the uniaxial mechanical properties of paper was investigated, providing new insights into how moisture and temperature affect both the elastic and plastic properties of paper materials. Furthermore, the in-plane, biaxial yield and failure surfaces were experimentally investigated in both stress and strain space, which gave an operating window for 3-D forming processes as well as input parameters for the constitutive models.

The constitutive modeling of paper materials and explicit finite element modeling were directed towards two 3-D forming processes: deep drawing and hydroforming. The constitutive models were calibrated and validated against simple (typically uniaxial) mechanical tests, and the explicit finite element models (which utilize the developed constitutive models) were validated against 3-D forming experiments. Hand-made papers with fibers partially oxidized to dialcohol cellulose, which has greater extensibility than typical paper materials, was furthermore characterized, modeled, and 3-D formed as a demonstration of the potential of modified paper fiber products for 3-D forming applications.

Abstract [sv]

Papper har länge framgångsrikt använts som förpackningsmaterial, men traditionella pappers- och kartongförpackningar är begränsade i form och design. Två experimentella studier har utförts för att få bättre förståelse för deformations- och brottmekanismer under 3D formning. Resultat från konstitutivmodellering i kombination med explicit finit element modellering har validerats mot ett flertal experimentella uppställningar och använts för att utveckla bättre förståelse för 3D formningsprocesser.

Två experimentella studier var nödvändiga för att ytterligare undersöka och modellera pappersmaterials 3D formbarhet. I den första undersöktes den kombinerade effekten av fukt och temperatur på pappers enaxliga mekaniska egenskaper, vilket gav nya insikter om hur fukt och temperatur påverkar både de elastiska och de plastiska egenskaperna hos papper. I den andra har biaxiella (i planet) flyt- och brottytor undersökts experimentellt i både spännings- samt töjningsrymden, vilket gav ett processfönster för 3D formningsmetoder samt ingångsparametrar för de konstitutiva ekvationerna.

Konstitutiv modellering av pappersmateriel samt explicit finit element modellering riktades mot två 3D formningsprocesser: djupdragning och hydroformning. De konstitutiva modellerna kalibrerades och validerades mot enkla (oftast enaxliga) mekaniska experiment, och explicita finita elementmodeller (som utnyttjar de utvecklade konstitutiva modellerna) validerades mot 3D formningsexperiment. Handark med fibrer delvis oxiderade-reducerade till dialkohol cellulosa, som har större töjbarhet än andra pappersmateriel, har dessutom karakteriserats, modellerats, samt 3D formats som en demonstation av potentialen hos modifierade pappersfiberprodukter i 3D formning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2017. 33 p.
Series
TRITA-HFL. Report / Royal Institute of Technology, Solid Mechanics, ISSN 1654-1472 ; 0608
Keyword
3-D forming, finite element method, constitutive model, moisture, temperature, biaxial, hydroforming, deep drawing, 3D formning, finita elementmetoden, konstitutiv modell, fukt, temperatur, biaxiell, hydroformning, djupdragning
National Category
Paper, Pulp and Fiber Technology Applied Mechanics
Research subject
Solid Mechanics
Identifiers
urn:nbn:se:kth:diva-199294 (URN)978-91-7729-250-0 (ISBN)
Public defence
2017-02-10, Sal F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20170104

Available from: 2017-01-04 Created: 2017-01-03 Last updated: 2017-01-04Bibliographically approved

Open Access in DiVA

CombinedEffectsMoistureTemperature(652 kB)138 downloads
File information
File name FULLTEXT01.pdfFile size 652 kBChecksum SHA-512
db4ee725e3e67486463d5c2ac21afa5c8cab9805fdb09fe8109685ffd4c667fe74a3f6c3330f850402ef8f94cc959013fd9c4431be0a5e2d5d7a1716294829eb
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusThe final publication is available at www.springerlink.com

Search in DiVA

By author/editor
Linvill, EricÖstlund, Sören
By organisation
Solid Mechanics (Dept.)VinnExcellence Center BiMaC InnovationBiofibre Materials Centre, BiMaC
In the same journal
Experimental mechanics
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 138 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 708 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf