Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carbonic Anhydrase Generates CO2 and H+ That Drive Spider Silk Formation Via Opposite Effects on the Terminal Domains
Show others and affiliations
2014 (English)In: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 12, no 8, e1001921- p.Article in journal (Refereed) Published
Abstract [en]

Spider silk fibers are produced from soluble proteins (spidroins) under ambient conditions in a complex but poorly understood process. Spidroins are highly repetitive in sequence but capped by nonrepetitive N- and C-terminal domains (NT and CT) that are suggested to regulate fiber conversion in similar manners. By using ion selective microelectrodes we found that the pH gradient in the silk gland is much broader than previously known. Surprisingly, the terminal domains respond in opposite ways when pH is decreased from 7 to 5: Urea denaturation and temperature stability assays show that NT dimers get significantly stabilized and then lock the spidroins into multimers, whereas CT on the other hand is destabilized and unfolds into ThT-positive beta-sheet amyloid fibrils, which can trigger fiber formation. There is a high carbon dioxide pressure (pCO(2)) in distal parts of the gland, and a CO2 analogue interacts with buried regions in CT as determined by nuclear magnetic resonance (NMR) spectroscopy. Activity staining of histological sections and inhibition experiments reveal that the pH gradient is created by carbonic anhydrase. Carbonic anhydrase activity emerges in the same region of the gland as the opposite effects on NT and CT stability occur. These synchronous events suggest a novel CO2 and proton-dependent lock and trigger mechanism of spider silk formation.

Place, publisher, year, edition, pages
2014. Vol. 12, no 8, e1001921- p.
National Category
Biochemistry and Molecular Biology
Identifiers
URN: urn:nbn:se:uu:diva-233605DOI: 10.1371/journal.pbio.1001921ISI: 000341523000004OAI: oai:DiVA.org:uu-233605DiVA: diva2:753874
Available from: 2014-10-09 Created: 2014-10-07 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

fulltext(4030 kB)