Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
In- and Out-of Phase Thermomechanical Fatigue of a Ni-Based Single-Crystal Superalloy
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology. Siemens Industrial Turbomachinery AB, Finspång, Sweden .
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
2014 (English)In: 2014 EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications / [ed] J. Y. Guédou and J. Choné, EDP Sciences, 2014, Vol. 14, Article no. 19003- p.Conference paper, Published paper (Refereed)
Abstract [en]

In this study, the difference between in-phase (IP) and out-of-phase (OP) thermomechanical fatigue (TMF) cycling from 100 to 750 °C has been investigated for the Ni-based single-crystal superalloy MD2. In addition, two different crystal orientations were studied, the ⟨001⟩ and ⟨011⟩ orientations respectively. When comparing IP and OP TMF lives, a strain range dependency is found for the ⟨001⟩ direction. For high strain ranges, IP cycling leads to a higher number of cycles to failure compared to OP. However at lower strain ranges, OP cycling leads to a higher number of cycles to failure compared to IP. Microstructure investigation shows that for the ⟨001⟩ direction, deformation twinning within the γ/γ′-microstructure is much more pronounced during OP conditions compared to IP. However for the ⟨011⟩ direction, the opposite is observed; twinning is more pronounced during IP TMF. From the microstructure investigation it is also visible that intersections between twins seems to trigger formation of TCP phases and recrystallization. These intersections also work as initiation points for TMF damage.

Place, publisher, year, edition, pages
EDP Sciences, 2014. Vol. 14, Article no. 19003- p.
Series
MATEC Web of Conferences, ISSN 2261-236X ; 14
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:liu:diva-111066DOI: 10.1051/matecconf/20141419003ISI: 000351930400073OAI: oai:DiVA.org:liu-111066DiVA: diva2:752967
Conference
EUROSUPERALLOYS 2014 – 2nd European Symposium on Superalloys and their Applications, 12-16 May 2014, Giens, France
Available from: 2014-10-06 Created: 2014-10-06 Last updated: 2016-05-26Bibliographically approved
In thesis
1. On Thermomechanical Fatigue of Single-Crystal Superalloys
Open this publication in new window or tab >>On Thermomechanical Fatigue of Single-Crystal Superalloys
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Thanks to their excellent mechanical and chemical properties at temperatures up to 1000 °C, nickel-based superalloys are used in critical components in high-temperature applications such as gas turbines and aero engines. One of the most critical components in a gas turbine is the turbine blade, and to improve the creep and fatigue properties of this component, it is sometimes cast in single-crystal form rather than in the more conventional poly-crystalline form. Gas turbines are most commonly used for power generation and the turbine efficiency is highly dependent on the performance of the superalloys.

Today, many gas turbines are used as a complement for renewable energy sources, for example when the wind is not blowing or when the sun is not shining. This means that the turbine runs differently compared to earlier, when it ran for longer time periods with a lower number of start-ups and shut-downs. This new way of running the turbine, with an increased number of start-ups and shut-downs, results in new conditions for critical components, and one way to simulate these conditions is to perform thermomechanical fatigue (TMF) testing in the laboratory. During TMF, both mechanical strain and temperature are cycled at the same time, and one fatigue cycle corresponds to the conditions experienced by the turbine blade during one start-up and shutdown of the turbine engine.

In the work leading to this PhD thesis, TMF testing of single-crystal superalloys was first performed in the laboratory and this was then followed microstructure investigations to study the occurring deformation and damage mechanisms. Specimens with different crystallographic directions have been tested in order to investigate the anisotropic behaviour shown by these materials. Results show a significant orientation dependence during TMF, in which specimens with a low elastic stiffness perform better. However, it is also shown that specimens with a higher number of active slip planes perform better during TMF compared to specimens with less active slip systems. This is because a higher number of active slip systems results in a more widespread deformation and seems to be beneficial for the TMF life. Further, microscopy shows that the deformation during TMF is localised to several deformation bands and that different deformation and damage mechanisms prevail according to in which crystal orientation the material is loaded. Deformation twinning is shown to be a major deformation mechanism during TMF, and the interception of twins seems to trigger recrystallization. This work also studies the effects of alloying a single-crystal superalloy with Si or Re, and results show a significant Si-effect where the TMF life increases by a factor of 2 when Si is added to the alloy.

Finally, this research results in an increased knowledge of the mechanical response as well as a deeper understanding of the deformation and damage mechanisms that occur in single-crystal superalloys during TMF. It is believed that in the long-term, this can contribute to a more efficient and reliable power generation by gas turbines.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 83 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1626
National Category
Materials Engineering Materials Chemistry
Identifiers
urn:nbn:se:liu:diva-111643 (URN)10.3384/diss.diva-111643 (DOI)978-91-7519-211-6 (ISBN)
Public defence
2014-11-28, ACAS, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2014-10-27 Created: 2014-10-27 Last updated: 2014-10-27Bibliographically approved

Open Access in DiVA

fulltext(1478 kB)170 downloads
File information
File name FULLTEXT01.pdfFile size 1478 kBChecksum SHA-512
dda9f75f0b491e455bb089a64a791d36e325a7a0e7166f1f47ff1410d6b1f9c57cbb480123f9cf94c1276f62e87cdb3eb2b2224e935d759f3f6aa60859b6116e
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Segersäll, MikaelMoverare, JohanLeidermark, DanielJohansson, Sten

Search in DiVA

By author/editor
Segersäll, MikaelMoverare, JohanLeidermark, DanielJohansson, Sten
By organisation
Engineering MaterialsThe Institute of TechnologySolid Mechanics
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 170 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 211 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf