Change search
ReferencesLink to record
Permanent link

Direct link
Life Cycle Assessment of High Speed Rail Electrification Systems and Effects on Corridor Planning
Norwegian University of Science and Technology, Faculty of Engineering Science and Technology, Department of Energy and Process Engineering.
2014 (English)MasteroppgaveStudent thesis
Abstract [en]

Different environmental analyses are so far allocated to assess emissions corresponding to high-speed rail infrastructure in era of environmental concern for maximize mobility and accessibility. However, electrification of HSR due to various components is intricate and roughly in detail in existing inventories. Predominantly, this is due to this fact that the existing inventories associated to HSR infrastructure focus on climate gases that lead to concrete and steel as the dominant input materials. Life cycle assessment (LCA), as a useful tool in evaluation of environmental impacts related to products and/or activities, can be helpful to deliver a better understanding of a defined system and later on can assist in decision making (by comparing alternative cases with each other). In this thesis, a complete LCA of HSR electrification is performed under PCR guideline that embraces a 60-year lifetime with a functional unit of one kilometer for three life cycle phases that are: construction, maintenance & renewal, and disposal. The results from this study are shown in six-impact categories (with two additional impact categories that are not mentioned in the PCR guideline). In addition, the results from the LCA of HSR electrification are applied to 12 alignments (as a projection of environmental analysis of Norwegian HSR) to illustrate the effect of HSR electrification on corridor planning. Regardless of results for either the functional unit of one kilometer or corridor planning, the relative results show that construction and maintenance & renewal by far are the main sources of potential impacts, and disposal (due to only transport of materials for their end-of-life treatment) has a fraction of impact through the entire lifetime of HSR electrification in all the six-impact categories. The main input materials associated with high impacts in electrification of HSR infrastructure are: copper, diesel, aluminium (cable), steel (low-alloyed), and UPS (batteries) that for different impact categories and life cycle phases the effect from each input material is varying. Copper projected that it has the highest contribution in impact categories human toxicity, metal depletion, freshwater eutrophication, and terrestrial acidification in both construction and maintenance & renewal. Aluminium (cable), and steel (low-alloyed) perform their highest contributions in impact categories climate change and photochemical oxidation formation in the construction phase; however, diesel shows a high impact in the same impact categories (as they are the same for aluminium (cable) and steel (low-alloyed)) in the maintenance & renewal phase. Moreover, UPS (batteries), due to having (relatively) high amount of lead, corresponds to high impact in impact categories terrestrial acidification, climate change, and photochemical oxidation formation in the maintenance & renewal life cycle phase. The study also considers the effect of section type and design-speed for the LCA of HSR electrification. It shows that the potential impact (for the most six-impact categories) in a kilometer of tunnel section for system of design-speed Re330 (for the speed up to 330 km/h) is higher than a kilometer of open section for system of design-speed S25 (for the speed up to 250 km/h). In this study, the effect of increase in the resolution of HSR electrification with the previous study of NHSR by Asplan Viak AS in corridor planning is compared that corresponds to increase in potential impacts in all the six-impact categories, which the highest effects are related to impact categories human toxicity, freshwater eutrophication and metal depletion.

Place, publisher, year, edition, pages
Institutt for energi- og prosessteknikk , 2014. , 200 p.
URN: urn:nbn:no:ntnu:diva-26852Local ID: ntnudaim:12128OAI: diva2:752204
Available from: 2014-10-02 Created: 2014-10-02 Last updated: 2014-10-02Bibliographically approved

Open Access in DiVA

fulltext(8155 kB)662 downloads
File information
File name FULLTEXT01.pdfFile size 8155 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(477 kB)6 downloads
File information
File name COVER01.pdfFile size 477 kBChecksum SHA-512
Type coverMimetype application/pdf
attachment(25209 kB)13 downloads
File information
File name ATTACHMENT01.zipFile size 25209 kBChecksum SHA-512
Type attachmentMimetype application/zip

By organisation
Department of Energy and Process Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 662 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 120 hits
ReferencesLink to record
Permanent link

Direct link