Change search
ReferencesLink to record
Permanent link

Direct link
Stability of Conductive Carbon Additives for High-voltage Li-ion Battery Cathodes
Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, Department of Materials Science and Engineering.
2014 (English)MasteroppgaveStudent thesis
Abstract [en]

Conductive carbon additives are important constituents of the current state-of-the-art Li-ion battery cathodes, as the traditional active cathode materials are characterized by too low electronic conductivities. In high-voltage Li-ion batteries, these additives are subject for anion intercalation and electrolyte oxidation, which might cause changes in the conductive carbon network in the cathode, and hence the overall cycling performance of the electrode. This thesis has focused on study the stability of three types of carbon additives operating at high voltages. Materials included were two conventional types of conductive additives, graphite, KS6, and carbon black, Super P Li, both provided from TIMCAL. In addition, a multilayer graphene powder, Graphene AO-2, provided from Graphene Supermarket has been investigated. The powder properties, size, shape and structure, were studied in a scanning electron microscope and by powder X-ray diffraction. Electrodes from these materials were cycled galvanostatically and with cyclic voltammetry to reveal their high-voltage behaviour, with respect to the two above mentioned electrochemical processes. More detailed investigations of anion intercalation in KS6 and Graphene AO-2 were conducted by in situ X-ray diffraction measurements and scanning electron microscopy. For cycling in 30:70 vol% EC/DMC 1 M LiPF6 to a voltage of 4.7 V vs. Li+/Li, the results showed that Super P Li can be considered as the most stable conductive additive. At 4.7 V vs. Li+/Li, both KS6 and Graphene AO-2 are electrochemically active, while Graphene AO-2 displays a more reversible behavior, and are more stable than KS6. For even higher operation potential, 5.0 V vs. Li+/Li, Graphene AO-2 showed the least stable behavior of the three materials, due to large degree of electrolyte oxidation, unstable anion intercalation upon continuous cycling, and the suggestions of structural degradation of the electrode. However, a small increase in the electrolyte stability window was shown with Graphene AO-2 when changing to a more viscous electrolyte (1:1 vol% EC/DMC 1 M LiPF6) or adding an anion receptor (tris(hexafluoroisopropyl)borate) to the electrolyte. The anion intercalation in KS6 was observed to form staged phases, starting at 4.83 V vs. Li+/Li. The electrode structure was suggested to be affected in a smaller extent compared to Graphene AO-2. In addition, less electrolyte was oxidized at the KS6 electrode surface, compared to the two other materials. However, the film formed on the Super P Li electrodes did not seem to affect the carbon negatively, because stable anion intercalation was observed upon continuous cycling. Indicating that Super P Li was not strongly affected by the intercalation process.

Place, publisher, year, edition, pages
Institutt for materialteknologi , 2014. , 124 p.
URN: urn:nbn:no:ntnu:diva-26847Local ID: ntnudaim:11343OAI: diva2:752199
Available from: 2014-10-02 Created: 2014-10-02 Last updated: 2014-10-02Bibliographically approved

Open Access in DiVA

fulltext(3704 kB)990 downloads
File information
File name FULLTEXT01.pdfFile size 3704 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(184 kB)16 downloads
File information
File name COVER01.pdfFile size 184 kBChecksum SHA-512
Type coverMimetype application/pdf

By organisation
Department of Materials Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 990 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 552 hits
ReferencesLink to record
Permanent link

Direct link