Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Effect of Urea on the Morphology of Co3O4 Nanostructures and Their Application for Potentiometric Glucose Biosensor
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Linköping University, Department of Science and Technology. Linköping University, The Institute of Technology.
King Saud University, Riyadh, Saudi Arabia.
Linköping University, Department of Science and Technology, Physics and Electronics. Linköping University, The Institute of Technology.
Show others and affiliations
2014 (English)In: Electroanalysis, ISSN 1040-0397, E-ISSN 1521-4109, Vol. 26, no 8, 1773-1781 p.Article in journal (Refereed) Published
Abstract [en]

In this study, an effect of different concentrations of urea on the morphology of cobalt oxide (Co3O4) nanostructures was investigated. The Co3O4 nanostructures are fabricated on gold coated glass substrate by the hydrothermal method. The morphological and structural characterization was performed by scanning electron microscopy, and X-ray diffraction techniques. The Co3O4 nanostructures exhibit morphology of flowers-like and have comprised on nanowires due to the increasing amount of urea. The nanostructures were highly dense on the substrate and possess a good crystalline quality. The Co3O4 nanostructures were successfully used for the development of a sensitive glucose biosensor. The presented glucose biosensor detected a wide range of glucose concentrations from 1 x 10(-6) M to 1 x 10(-2) M with sensitivity of a -56.85 mV/decade and indicated a fast response time of less than 10 s. This performance could be attributed to the heterogeneous catalysis effect at glucose oxidase enzyme, nanoflowers, and nanowires interfaces, which have enhanced the electron transfer process on the electrode surface. Moreover, the reproducibility, repeatability, stability and selectivity were also investigated. All the obtained results indicate the potential use of the developed glucose sensor for monitoring of glucose concentrations at drugs, human serum and food industry related samples.

Place, publisher, year, edition, pages
Wiley-VCH Verlagsgesellschaft, 2014. Vol. 26, no 8, 1773-1781 p.
Keyword [en]
Nanostructures; Hydrothermal method; Glucose biosensor
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:liu:diva-110486DOI: 10.1002/elan.201400116ISI: 000340557700016OAI: oai:DiVA.org:liu-110486DiVA: diva2:746892
Available from: 2014-09-15 Created: 2014-09-12 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion
Open this publication in new window or tab >>Chemically Modified Metal Oxide Nanostructures Electrodes for Sensing and Energy Conversion
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The goal of this thesis is the development of scalable, low cost synthesis of metal oxide nanostructures based electrodes and to correlate the chemical modifications with their energy conversion performance. Methods in energy conversion in this thesis have focused on two aspects; a potentiometric chemical sensor was used to determine the analytical concentration of some components of the analyte solution such as dopamine, glucose and glutamate molecules. The second aspect is to fabricate a photo-electrochemical (PEC) cell. The biocompatibility, excellent electro-catalytic activities and fast electron transfer kinetics accompanied with a high surface area to volume ratio; are properties of some metal oxide nanostructures that of a potential for their use in energy conversion. Furthermore, metal oxide nanostructures based electrode can effectively be improved by the physical or a chemical modification of electrode surface. Among these metal oxide nanostructures are cobalt oxide (Co3O4), zinc oxide (ZnO), and bismuth-zincvanadate (BiZn2VO6) have all been studied in this thesis. Metal oxide nanostructures based electrodes are fabricated on gold-coated glass substrate by low temperature (< 100 0C) wet chemicalapproach. X-ray diffraction, x-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the electrodes while ultraviolet-visible absorption and photoluminescence were used to investigate the optical properties of the nanostructures. The resultant modified electrodes were tested for their performance as chemical sensors and for their efficiency in PEC activities. Efficient chemically modified electrodes were demonstrated through doping with organic additives like anionic, nonionic or cationic surfactants. The organic additives are showing a crucial role in the growth process of metal oxide nanocrystals and hence can beused to control the morphology. These organic additives act also as impurities that would significantly change the conductivity of the electrodes. However, no organic compounds dependence was observed to modify the crystallographic structure. The findings in this thesis indicate the importance of the use of controlled nanostructures morphology for developing efficient functional materials.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2017. 73 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1827
Keyword
Metal oxide nanostructures, mixed metal oxide nano-compound, low temperature wet-chemical growth, chemically modified electrode, doping, surfactant, potentiometric sensor, chemical sensor and photo-electrochemical activity
National Category
Materials Chemistry Inorganic Chemistry Other Chemical Engineering Analytical Chemistry
Identifiers
urn:nbn:se:liu:diva-134275 (URN)10.3384/diss.diva-134275 (DOI)9789176855904 (ISBN)
Public defence
2017-03-03, Sal K3, Kåkenhus, Campus Norrköping, Norrköping, 10:15 (English)
Opponent
Supervisors
Available from: 2017-02-02 Created: 2017-02-02 Last updated: 2017-02-09Bibliographically approved

Open Access in DiVA

fulltext(1991 kB)971 downloads
File information
File name FULLTEXT01.pdfFile size 1991 kBChecksum SHA-512
5ba9b9b6166a969f421e3dd8c685509fa501fc331db3a12d881362aaf93e90fdf1eed65268c55b80822e6d448ee4743af4c46f49b837f63fd3d91cbae7d7e5d7
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Authority records BETA

Ibupoto, Zafar HussainElhag, SamiNur, OmerWillander, Magnus

Search in DiVA

By author/editor
Ibupoto, Zafar HussainElhag, SamiNur, OmerWillander, Magnus
By organisation
Physics and ElectronicsThe Institute of TechnologyDepartment of Science and Technology
In the same journal
Electroanalysis
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 971 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 271 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf