Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The Effect of Mini-PEG-Based Spacer Length on Binding and Pharmacokinetic Properties of a Ga-68-Labeled NOTA-Conjugated Antagonistic Analog of Bombesin
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform. Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Pharmacy, Department of Medicinal Chemistry, Preclinical PET Platform.
Show others and affiliations
2014 (English)In: Molecules, ISSN 1420-3049, E-ISSN 1420-3049, Vol. 19, no 7, 10455-10472 p.Article in journal (Refereed) Published
Abstract [en]

The overexpression of gastrin-releasing peptide receptor (GRPR) in cancer can be used for peptide-receptor mediated radionuclide imaging and therapy. We have previously shown that an antagonist analog of bombesin RM26 conjugated to 1,4,7-triazacyclononane-N, N', N ''-triacetic acid (NOTA) via a diethyleneglycol (PEG(2)) spacer (NOTA-PEG(2)-RM26) and labeled with Ga-68 can be used for imaging of GRPR-expressing tumors. In this study, we evaluated if a variation of mini-PEG spacer length can be used for optimization of targeting properties of the NOTA-conjugated RM26. A series of analogs with different PEG-length (n = 2, 3, 4, 6) was synthesized, radiolabeled and evaluated in vitro and in vivo. The IC50 values of Ga-nat-NOTA-PEG(n)-RM26 (n = 2, 3, 4, 6) were 3.1 +/- 0.2, 3.9 +/- 0.3, 5.4 +/- 0.4 and 5.8 +/- 0.3 nM, respectively. In normal mice all conjugates demonstrated similar biodistribution pattern, however Ga-68-NOTA-PEG(3)-RM26 showed lower liver uptake. Biodistribution of Ga-68-NOTA-PEG(3)-RM26 was evaluated in nude mice bearing PC-3 (prostate cancer) and BT-474 (breast cancer) xenografts. High uptake in tumors (4.6 +/- 0.6% ID/g and 2.8 +/- 0.4% ID/g for PC-3 and BT-474 xenografts, respectively) and high tumor-to-background ratios (tumor/ blood of 44 +/- 12 and 42 +/- 5 for PC-3 and BT-474 xenografts, respectively) were found already at 2 h p.i. of Ga-68-NOTA-PEG(3)-RM26. Results of this study suggest that variation in the length of the PEG spacer can be used for optimization of targeting properties of peptide-chelator conjugates. However, the influence of the mini-PEG length on biodistribution is minor when di-, tri-, tetra- and hexaethylene glycol are compared.

Place, publisher, year, edition, pages
2014. Vol. 19, no 7, 10455-10472 p.
Keyword [en]
bombesin analog, PEG, GRPR, antagonist, molecular imaging, breast cancer, prostate cancer, BT-474, PC-3 cells
National Category
Radiology, Nuclear Medicine and Medical Imaging Cancer and Oncology
Identifiers
URN: urn:nbn:se:uu:diva-231315DOI: 10.3390/molecules190710455ISI: 000340036200108PubMedID: 25036155OAI: oai:DiVA.org:uu-231315DiVA: diva2:744286
Available from: 2014-09-08 Created: 2014-09-07 Last updated: 2017-12-05Bibliographically approved
In thesis
1. Bombesin Antagonists for Targeting Gastrin-Releasing Peptide Receptor-Positive Tumors: Design, Synthesis, Preclinical Evaluation and Optimization of Imaging Agents
Open this publication in new window or tab >>Bombesin Antagonists for Targeting Gastrin-Releasing Peptide Receptor-Positive Tumors: Design, Synthesis, Preclinical Evaluation and Optimization of Imaging Agents
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is focused on the development, preclinical evaluation, and optimization of radiotracers for the detection of gastrin-releasing peptide receptor (GRPR)-expressing tumors. The work is divided into three distinct parts: (1) the development of bombesin (BN) antagonist (RM26)-based imaging radiotracers for the detection of GRPR-expressing tumors using different positron emission tomography (PET) and single photon emission computed tomography (SPECT) radionuclides (68Ga, 18F and 111In), (2) the establishment of a method to monitor the ligand-G protein-coupled receptor (GPCR) interaction in real time without requiring purification and stabilization of the receptors, and (3) the evaluation of radiopeptide structure-related factors (length of mini-PEG linker and composition of chelator for metal labeling) affecting the in vitro and in vivo characteristics of RM26-based tracers.

We demonstrated the possibility of high-contrast in vivo imaging of GRPR-expressing xenografts despite the physiological expression of GRPR in abdominal organs. Fast radioactivity clearance from the blood and healthy organs, including receptor-positive organs, and long retention in the tumors resulted in high tumor-to-background ratios. A novel real-time assay for measuring the kinetics of the radiotracers targeting GPCR was evaluated. Living cells were used instead of purified receptors in this technology, bringing the developmental work one step closer to the true target environment (imaging in living systems). The comparative study of 68Ga-labeled NOTA-PEGn-RM26 with di-, tri-, tetra- and hexaethylene glycol chains demonstrated that the addition of only a few units of ethylene glycol to the spacer is insufficient to appreciably affect the biodistribution of the radiopeptide. Finally, a comparative study of 68Ga-labeled PEG2-RM26 analogs N-terminally conjugated to NOTA, NODAGA, DOTA or DOTAGA highlighted the influence of the chelator on the targeting properties of the radiopeptide.

The main conclusion that can be drawn from this thesis is that 68Ga-NOTA-PEG2-RM26 has favorable biodistribution properties, such as rapid clearance from blood and tissues with physiological GRPR expression levels and long retention in GRPR-expressing tumors, and that this radiopeptide is potentially suitable for initial clinical investigation.

Place, publisher, year, edition, pages
Uppsala: Acta Universitatis Upsaliensis, 2014. 66 p.
Series
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy, ISSN 1651-6192 ; 191
Keyword
Bombesin, Gastrin-releasing peptide receptor (GRPR), Antagonist, Radionuclide molecular imaging
National Category
Pharmaceutical Sciences
Identifiers
urn:nbn:se:uu:diva-232123 (URN)978-91-554-9039-3 (ISBN)
Public defence
2014-10-31, Rudbecksalen, Dag Hammarskjölds väg 20, Uppsala, 09:00 (English)
Opponent
Supervisors
Available from: 2014-10-10 Created: 2014-09-12 Last updated: 2015-01-23

Open Access in DiVA

fulltext(560 kB)347 downloads
File information
File name FULLTEXT01.pdfFile size 560 kBChecksum SHA-512
52c27fc7ca7d4fbcd1bd7e39e36b8ab55072c4205bec6a758b8c2c33d77114dc0b6d4228578566bcb16f32aaef895cfd2da4ebe198af613426899c8f968532f4
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Varasteh, ZohrehRosenström, UlrikaVelikyan, IrinaAltai, MohamedHonarvar, HadisRosestedt, MariaLindeberg, GunnarSörensen, JensLarhed, MatsTolmachev, VladimirOrlova, Anna
By organisation
Preclinical PET PlatformOrganic Pharmaceutical ChemistryBiomedical Radiation SciencesClinical PhysiologySection of Nuclear Medicine and PET
In the same journal
Molecules
Radiology, Nuclear Medicine and Medical ImagingCancer and Oncology

Search outside of DiVA

GoogleGoogle Scholar
Total: 347 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 1043 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf