Change search
ReferencesLink to record
Permanent link

Direct link
Automating Information Flow Analysis of Low Level Code
KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS.
KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS.ORCID iD: 0000-0001-5432-6442
KTH, School of Computer Science and Communication (CSC), Theoretical Computer Science, TCS.
2014 (English)In: Proceedings of CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA, Association for Computing Machinery (ACM), 2014Conference paper (Refereed)
Abstract [en]

Low level code is challenging: It lacks structure, it uses jumps and symbolic addresses, the control ow is often highly optimized, and registers and memory locations may be reused in ways that make typing extremely challenging. Information ow properties create additional complications: They are hyperproperties relating multiple executions, and the possibility of interrupts and concurrency, and use of devices and features like memory-mapped I/O requires a departure from the usual initial-state nal-state account of noninterference. In this work we propose a novel approach to relational verication for machine code. Verication goals are expressed as equivalence of traces decorated with observation points. Relational verication conditions are propagated between observation points using symbolic execution, and discharged using rst-order reasoning. We have implemented an automated tool that integrates with SMT solvers to automate the verication task. The tool transforms ARMv7 binaries into an intermediate, architecture-independent format using the BAP toolset by means of a veried translator. We demonstrate the capabilities of the tool on a separation kernel system call handler, which mixes hand-written assembly with gcc-optimized output, a UART device driver and a crypto service modular exponentiation routine.

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM), 2014.
Keyword [en]
Information Flow Security, Formal Verification, Symbolic Execution;, Machine Code
National Category
Computer Systems
URN: urn:nbn:se:kth:diva-150489DOI: 10.1145/2660267.2660322ScopusID: 2-s2.0-84910645826ISBN: 978-1-4503-2957-6OAI: diva2:743673
CCS’14, November 3–7, 2014, Scottsdale, Arizona, USA

QC 20140905

Available from: 2014-09-04 Created: 2014-09-04 Last updated: 2014-09-08Bibliographically approved
In thesis
1. Logics for Information Flow Security:From Specification to Verification
Open this publication in new window or tab >>Logics for Information Flow Security:From Specification to Verification
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Software is becoming  increasingly  ubiquitous and today we find software running everywhere. There is software driving our favorite  game  application or  inside the web portal we use to read the morning  news, and   when we book a vacation.  Being so commonplace, software has become an easy target to compromise  maliciously or at best to get it wrong. In fact, recent trends and highly-publicized attacks suggest that vulnerable software  is at  the root of many security attacks.     

Information flow security is the research field that studies  methods and techniques to provide strong security guarantees against  software security attacks and vulnerabilities.  The goal of an  information flow analysis is to rigorously check how  sensitive information is used by the software application and ensure that this information does not escape the boundaries of the application, unless it is properly granted permission to do so by the security policy at hand.  This process can   be challenging asit first requires to determine what the applications security policy is and then to provide a mechanism  to enforce that policy against the  software application.  In this thesis  we address the problem of (information flow) policy specification and policy enforcement by leveraging formal methods, in particular logics and language-based analysis and verification techniques.

The thesis contributes to the state of the art of information flow security in several directions, both theoretical and practical. On the policy specification side, we provide a  framework to reason about  information flow security conditions using the notion of knowledge. This is accompanied  by logics that  can be used  to express the security policies precisely in a syntactical manner. Also, we study the interplay between confidentiality and integrity  to enforce security in  presence of active attacks.  On the verification side, we provide several symbolic algorithms to effectively check whether an application adheres to the associated security policy. To achieve this,  we propose techniques  based on symbolic execution and first-order reasoning (SMT solving) to first extract a model of the target application and then verify it against the policy.  On the practical side, we provide  tool support by automating our techniques and  thereby making it possible  to verify programs written in Java or ARM machine code.  Besides the expected limitations, our case studies show that the tools can be used to  verify the security of several realistic scenarios.

More specifically, the thesis consists of two parts and six chapters. We start with an introduction giving an overview of the research problems and the results of the thesis. Then we move to the specification part which  relies on knowledge-based reasoning and epistemic logics to specify state-based and trace-based information flow conditions and on the weakest precondition calculus to certify security in  presence of active attacks.  The second part of the thesis addresses the problem of verification  of the security policies introduced in the first part.  We use symbolic execution  and  SMT solving techniques to enable   model checking of the security properties.  In particular, we implement a tool that verifies noninterference  and declassification policies for Java programs. Finally, we conclude with relational verification of low level code, which is also supported by a tool.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2014. viii, 127 p.
TRITA-CSC-A, ISSN 1653-5723 ; 2014:13
National Category
Computer Systems
Research subject
Computer Science
urn:nbn:se:kth:diva-150423 (URN)978-91-7595-259-8 (ISBN)
Public defence
2014-10-03, Kollegiesalen, Brinellvägen 8, KTH, Stockholm, 14:00 (English)

QC 20140908

Available from: 2014-09-08 Created: 2014-09-03 Last updated: 2014-09-08Bibliographically approved

Open Access in DiVA

ccs14_bdg(482 kB)226 downloads
File information
File name FULLTEXT01.pdfFile size 482 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopusConference website

Search in DiVA

By author/editor
Balliu, MusardDam, MadsGuanciale, Roberto
By organisation
Theoretical Computer Science, TCS
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar
Total: 226 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 218 hits
ReferencesLink to record
Permanent link

Direct link