Change search
ReferencesLink to record
Permanent link

Direct link
Surface Mapping using Quadcopter
Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Engineering Cybernetics.
2014 (English)MasteroppgaveStudent thesis
Abstract [en]

This thesis studies the use of unmanned aerial vehicles to perform ice management in the Arctic Ocean by gathering information about and physically control the ice environment. Such a system is needed for safety reasons as marine operations are moving further north. In order to gather information about the ice environment, a UAV will be used for surface mapping. The quadcopter Parrot AR. Drone 2.0 will be used as a testbed for implementing proposed strategies for guidance, navigation and control while doing surface mapping using a camera. A guidance and navigation system is designed and implemented using measurements from onboard sensors and the camera system OptiTrack, which is used to measure position, velocity and orientation of the quadcopter. Using these estimated states as parameters and inputs to a proportional-integral-derivative controller, the position will be controlled. Waypoints are calculated according to desired parameters provided by an operator. An autonomous guidance, navigation and control system that moves the drone in a search pattern inside a desired area requested by the operator, is the result of the designed surface mapping strategy. An algorithm that performs object detection and mapping is implemented for the onboard camera to be able to detect objects in the lab setup. Back-projection of a 2D pixel point to respective world coordinates is implemented. C++ is used for all modules. Sub modules are simulated in Matlab and Simulink before tested with the AR. Drone. Simulations and measurements from lab testing are compared for performance evaluation. Results for the overall implementation shows that a UAV platform for doing object mapping is indeed a concept to pursue. However, this lab setup would not be applicable in a real world experiment. The AR. Drone will, due to its weight and limited power, not be able to operate under heavy wind and weather conditions. Also, detection of ice is more complicated than the suggested implementation, due to factors like weather and light reflections. It should be clear that this system design is rather a prototype illustration of a concept than a system to be used.

Place, publisher, year, edition, pages
Institutt for teknisk kybernetikk , 2014. , 145 p.
URN: urn:nbn:no:ntnu:diva-25916Local ID: ntnudaim:10738OAI: diva2:742170
Available from: 2014-08-31 Created: 2014-08-31 Last updated: 2014-08-31Bibliographically approved

Open Access in DiVA

fulltext(8451 kB)2062 downloads
File information
File name FULLTEXT01.pdfFile size 8451 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(184 kB)6 downloads
File information
File name COVER01.pdfFile size 184 kBChecksum SHA-512
Type coverMimetype application/pdf
attachment(8451 kB)53 downloads
File information
File name ATTACHMENT01.zipFile size 8451 kBChecksum SHA-512
Type attachmentMimetype application/zip

By organisation
Department of Engineering Cybernetics

Search outside of DiVA

GoogleGoogle Scholar
Total: 2062 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 206 hits
ReferencesLink to record
Permanent link

Direct link