Change search
ReferencesLink to record
Permanent link

Direct link
Efficient Implementation of Cross-Correlation in Hardware
Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, Department of Electronics and Telecommunications.
2014 (English)MasteroppgaveStudent thesis
Abstract [en]

Low-area matched filter and correlator designs are explored in this thesis, for ADC resolutions of 1- and 2-bits. Correlators are used extensively in spread-spectrum communication technologies, where they serve as a means of detecting a known pseudo-random sequence (PN code). The correlator designs presented here are intended for direct-sequence spread spectrum (DSSS) radio, where the data to be sent is expanded using either the PN code, or the inverse of the PN code. The correlator or matched filter will then respond with a positive or negative peak when a data bit is detected. To test various correlator designs a testbench is developed in MATLAB, where a DSSS data sequence can be created and corrupted with an adjustable level of white Gaussian noise. The data stream with noise is filtered with an automatic gain stage, and sampled using an ADC of variable resolution and sampling rate. The sampled signal is then fed to a mathematical model of the given correlator design to see how it behaves. For an objective measure of performance in the presence of noise, a novel noise immunity test bench was developed, which subjects the correlator models to a signal with increasing levels of noise. The SNR where the correlator is no longer able to extract the correct data bits from the signal is considered the noise immunity level. Several HDL matched filter designs are presented for both 1- and 2-bits of ADC resolution. The 1-bit matched filters are tested using the Barker-11 PN code, whereas the 2-bit correlators are tested using a 36 chip long chirp sequence. For both the 1- and 2-bit correlators, a specific design type using a multiplexed parallel counter was the most area efficient. A novel grouping correlator design is also presented for 2-bit operation, however the area required by this design is larger than that of the other designs. The results from the grouping design indicate that a significant reduction in dynamic power is present. In terms of power efficiency, the dual correlator designs showed promising results of half the power consumption of the other designs. The design of parallel bit counters used in the matched filters are also presented, along with the area per bits required for each design. Verification of the designs is performed using mathematical correlator models, which are subjected to the same input as the Verilog modules. The results from these two tests are compared, and any discrepancies are reported to the user of the testbench. The mathematical and Verilog correlator models are fed with a simulated real-world input signal, which is essentially random noise for purposes of testing functionality.

Place, publisher, year, edition, pages
Institutt for elektronikk og telekommunikasjon , 2014. , 90 p.
URN: urn:nbn:no:ntnu:diva-25839Local ID: ntnudaim:10911OAI: diva2:741691
Available from: 2014-08-28 Created: 2014-08-28 Last updated: 2014-08-28Bibliographically approved

Open Access in DiVA

fulltext(1203 kB)1679 downloads
File information
File name FULLTEXT01.pdfFile size 1203 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(184 kB)12 downloads
File information
File name COVER01.pdfFile size 184 kBChecksum SHA-512
Type coverMimetype application/pdf
attachment(284 kB)24 downloads
File information
File name ATTACHMENT01.zipFile size 284 kBChecksum SHA-512
Type attachmentMimetype application/zip

By organisation
Department of Electronics and Telecommunications

Search outside of DiVA

GoogleGoogle Scholar
Total: 1679 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 307 hits
ReferencesLink to record
Permanent link

Direct link