Change search
ReferencesLink to record
Permanent link

Direct link
Preparation and Characterisation of Hydrophobically Modified Xanthan<\b>
Norwegian University of Science and Technology, Faculty of Natural Sciences and Technology, Department of Biotechnology.
2014 (English)MasteroppgaveStudent thesis
Abstract [en]

Xanthan is a polysaccharide widely used in food, cosmetics, and enhanced oil recovery (EOR) by polymer flooding. In polymer flooding addition of polymers increases the viscosity of the injection water used for oil extraction from the oil producing wells. It is desirable to take advantage of biopolymers in EOR, due to their biodegradability and easily accessible raw materials of low costs. By hydrophobically modifying xanthan the thickening properties may be improved, due to intra- and intermolecular interactions between hydrophobic side groups. In this master thesis xanthan was hydrophobically modified by grafting of octylamine using carbodiimide chemistry, applying a method adopted from the University of Le Havre, France. Properties of non-modified and modified xanthan samples prepared from two different start xanthans, from Kelco and Statoil, were studied by SEC-MALLS, intrinsic viscosity measurements, and 1H-NMR spectroscopy. In order to obtain xanthan molecules of a size suitable for these analysis methods, sonication was performed. Xanthan samples were sonicated for different times, and an obvious decreasing trend of the molecular weight and intrinsic viscosity as the sonication time increased was shown. Intrinsic viscosity dependence on molecular weight was in good accordance to previous reported results. Depolymerisation by H2O2 and NaOH prior to 1H-NMR analysis did not have the desirable effect on degradation of xanthan chains. The side groups were cut off, rather than breaking the &#946;-1,4 bonds between the glucose units in the xanthan backbone. By comparing the grafting density of octylamine for an acetyl and pyruvyl free xanthan sample and xanthan samples with these groups intact, it was shown for the first time that more than half of the octylamine binds to the carboxylic acid of the pyruvyl group on the &#946;-D-mannose of xanthan. Intrinsic viscosity determined by a single capillary viscometer was higher for modified xanthan than non-modified, while by a four-bulb shear dilution viscometer the opposite was shown. The intrinsic viscosity was shown to be dependent on shear rate by the four-bulb viscometer, and the intrinsic viscosities at zero shear for non-modified and modified xanthan was significantly higher than that determined by single capillary viscometer.

Place, publisher, year, edition, pages
Institutt for bioteknologi , 2014. , 178 p.
URN: urn:nbn:no:ntnu:diva-25643Local ID: ntnudaim:11101OAI: diva2:738258
Available from: 2014-08-16 Created: 2014-08-16 Last updated: 2014-08-16Bibliographically approved

Open Access in DiVA

fulltext(3118 kB)678 downloads
File information
File name FULLTEXT01.pdfFile size 3118 kBChecksum SHA-512
Type fulltextMimetype application/pdf
cover(185 kB)7 downloads
File information
File name COVER01.pdfFile size 185 kBChecksum SHA-512
Type coverMimetype application/pdf

By organisation
Department of Biotechnology

Search outside of DiVA

GoogleGoogle Scholar
Total: 678 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 86 hits
ReferencesLink to record
Permanent link

Direct link