Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tyrosine phosphorylation profiling via in situ proximity ligation assay
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Cancer and Vascular Biology. Uppsala University, Science for Life Laboratory, SciLifeLab.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular tools. Uppsala University, Science for Life Laboratory, SciLifeLab.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Molecular and Morphological Pathology. Uppsala University, Science for Life Laboratory, SciLifeLab.
Uppsala University, Disciplinary Domain of Medicine and Pharmacy, Faculty of Medicine, Department of Immunology, Genetics and Pathology, Genomics. Uppsala University, Science for Life Laboratory, SciLifeLab.
Show others and affiliations
2014 (English)In: BMC Cancer, ISSN 1471-2407, E-ISSN 1471-2407, Vol. 14, 435- p.Article in journal (Refereed) Published
Abstract [en]

Background: Tyrosine phosphorylation (pTyr) is an important cancer relevant posttranslational modification since it regulates protein activity and cellular localization. By controlling cell growth and differentiation it plays an important role in tumor development. This paper describes a novel approach for detection and visualization of a panel of pTyr proteins in tumors using in situ proximity ligation assay. Methods: K562 leukemia cells were treated with tyrosine kinase and/or phosphatase inhibitors to induce differences in pTyr levels and mimic cells with different malignant properties. Cells were then probed with one antibody against the pTyr modification and another probe against the detected protein, resulting in a detectable fluorescent signal once the probes were in proximity. Results: Total and protein specific pTyr levels on ABL, SHC, ERK2 and PI3K proteins were detected and samples of control and treated cells were distinguished at the pTyr level using this novel approach. Promising results were also detected for formalin fixed and paraffin embedded cells in the micro array format. Conclusions: This application of in situ proximity ligation assay is valuable in order to study the pTyr modification of a panel of proteins in large data sets to validate mass spectrometric data and to be combined with tissue microarrays. The approach offers new opportunities to reveal the pTyr signatures in cells of different malignant properties that can be used as biomarker of disease in the future.

Place, publisher, year, edition, pages
2014. Vol. 14, 435- p.
Keyword [en]
Cancer biomarkers, Protein signaling, Protein tyrosine phosphorylation, in situ proximity ligation assay (in situ PLA)
National Category
Cancer and Oncology
Identifiers
URN: urn:nbn:se:uu:diva-229297DOI: 10.1186/1471-2407-14-435ISI: 000338162100001OAI: oai:DiVA.org:uu-229297DiVA: diva2:736384
Available from: 2014-08-06 Created: 2014-08-05 Last updated: 2017-12-05Bibliographically approved

Open Access in DiVA

fulltext(3100 kB)