Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Investigationand implementations of efficient algorithms for multiscale co-simulation inNeuroscience
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Numerical Analysis, NA.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
En studie i effektiva algoritmer för flerskaliga koppladesimuleringar i neurovetenskap (Swedish)
Abstract [en]

The function of the nervous system consists of a multitude of different processes and phenomena. These occur on different spacial and temporal scales and are described by different physical formalisms. Most models are limited to one scale and one type of physical or mathematical description. In this thesis, an effective method for co-simulating such models was implemented. The method is an adaptive step size controller combining Backward Differentiation Formulas with a PI-controller. It was tested on a simple problem, coupling an electric model of a neuron with chemical reactions, with satisfying results.

Abstract [sv]

Funktionaliteten i nervsystemet består av ett flertal olika processer och fenomen. Dessa sker på olika tids- och rumsskalor och beskrivs ofta av olika fysikaliska formalismer. De flesta modeller är begränsade till en skala och en sorts matematisk eller fysikalisk beskrivning. I denna uppsats utvecklades en effektiv metod för att koppla simuleringar av sådana modeller. Metoden är en adaptiv stegregulator som kombinerar BDF-metoder med en PI-regulator. Metoden testades på ett konstruerat problem som sammankopplade en elektrisk modell av en nervcell med kemiska reaktioner, med tillfredsställande resultat.

Place, publisher, year, edition, pages
2014.
Series
TRITA-MAT-E, 2014:42
National Category
Computational Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-148159OAI: oai:DiVA.org:kth-148159DiVA: diva2:735909
Subject / course
Scientific Computing
Educational program
Master of Science - Mathematics
Supervisors
Examiners
Available from: 2014-08-04 Created: 2014-08-01 Last updated: 2014-08-04Bibliographically approved

Open Access in DiVA

fulltext(1058 kB)2190 downloads
File information
File name FULLTEXT01.pdfFile size 1058 kBChecksum SHA-512
0346c9a9870b4f4bdbde710d5af88f9b208e15cd6af21228647378bb4eb76c586cbd2d75bea588f0898df8da30b94b5e1548a23e8ee6158ebaf8f158df37befb
Type fulltextMimetype application/pdf

By organisation
Numerical Analysis, NA
Computational Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 2190 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1039 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf