Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Computer Modeling of Thermodynamic Flows in Reactors for Activated Carbon Production
Karlstad University, Faculty of Health, Science and Technology (starting 2013), Department of Engineering and Chemical Sciences.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 300 HE creditsStudent thesisAlternative title
Datormodellering av Termodynamiska Flöden i Reaktorer för Produktion av Aktivt Kol (Swedish)
Abstract [en]

There's a big demand for activated carbon in Ghana, it's used for the country's mining industry as well as in a multitude of other applications. Currently all activated carbon is imported despite the fact that the country has a large supply of agricultural waste that could be used for its production. This study focuses on activated carbon production from oil palm kernel shells from the nations palm oil industry.

Earlier research points to a set of specific conditions needed for the production. The pyrolysis process produces biochar from the biomass and the process is set to take place for 2 h at 600  °C after a initial heating of 10 °C/min. The activation process then produces the activated carbon from the biochar and is set to take place for 2 h at 850 °C with a heating rate of 11.6 °C/min.

Two reactors are designed to meet the desired conditions. The reactors are both set up to use secondary gases from diesel burners to heat the biomass. The heating is accomplished by leading the hot gases in an enclosure around a rotating steel drum that holds the biomass. To improve the ability to control the temperature profile in the biomass two outlet pipes are set up on top of the reactor, one above the biomass inlet and one above the biomass outlet. By controlling how much gas that flows to each outlet both the heating rate and the stability of the temperature profile can be controlled. The secondary gas inlet is set up facing downwards at the transition between the heating zone (area of initial heating) and the maintaining zone (area of constant temperature).

The two reactors are modeled the physics simulation software COMSOL Multiphysics. Reference operating parameters are established and these parameters, as well as parts of the design, are then changed to evaluate how the temperature profile in the biomass and biochar can be controlled. A goal area was set up for the profile in the biomass where it was required to maintain a temperature of between 571.5 and 628.5 °C after the initial heating to be seen as acceptable. Similarly a goal area was set for the biochar between 809 °C and 891 °C after the initial heating.

It's found from the simulations that the initial design of the reactors work well and can be used to produce the desired temperature profiles in the biomass and biochar. Furthermore it's concluded that the initial design for the pyrolysis reactor can be improved by having the gas outlet pipe situated by the biomass inlet face downwards instead of upwards. The redesign improves the overall efficiency of the reactor by increasing the heating rate and maintained temperature.

The evaluation of the operating parameters led to the conclusion that the secondary gas inlet temperature effects the temperature profile to a greater extent than the gas mass flow in both reactors thereby making them more energy efficient. The increase in efficiency comes with a drawback of more unstable temperature profile. If the temperature profile becomes too unstable it will include temperatures that are too high or too low to be seen as acceptable.

Abstract [sv]

Det finns en stor efterfrågan på aktivt kol i Ghana, det används dels i landets gruvnäring men även för en mängd andra applikationer. Idag importeras allt aktivt kol, trots att landet har stora mängder restprodukter från jordbruk som skulle kunna användas för produktion av aktivt kol. Det här arbetet fokuserar på produktion av aktivt kol från oiljepalmskärnor från landets palmoljeindustri.

Tidigare forskning påvisar en mängd specifika förhållanden som krävs för produktionen. Pyrolysprocessen producerar biokol från biomassa och som mål för processen sätts att den ska hålla 600 °C i två timmar efter en uppvärmningstakt av 10 °C/min. För aktiveringsprocessen som sedan producerar aktivt kol från biokolet sätts målet till att hålla en temperatur av 850 °C med en uppvärmningstakt av 11.6 °C/min.

Två reaktorer designas för att skapa dom efterfrågade förhållandena. Reaktorerna värms av sekundärgas från dieselbrännare för att värma biomassan och biokolet. Värmningen sker genom att den värma sekundärgasen leds runt en roterande ståltrumma genom vilken biomassan flödar. För att kunna ha en bra kontroll av temperaturprofilen i biomassan så används två utloppsrör för gasen på reaktorernas ovansida. Genom att kontrollera gasflödet till respektive utloppsrör kan både uppvärmningstakt och stabiliteten hos temperaturen justeras. Sekundärgasens inloppsrör placeras på reaktorns undersida och riktas mot övergångszonen mellan uppvärmning och stabilisering.

Reaktorerna modelleras i fysiksimuleringsprogrammet COMSOL Multiphysics 4.3b. I COMSOL simuleras driften och de parametrar som påverkar den evalueras genom att varieras mot ett referensvärde. Temperaturprofilens målområde i pyrolysreaktorn sätts till att hålla en temperatur mellan 571.5 och 628.5 °C för pyrolysen och efter uppvärmningen, om temperaturprofilen går utanför målområdet så klassas den som oacceptabel. För biokolet i aktiveringsreaktorn sätts ett liknade mål till att det ska hålla mellan 809 °C och 891 °C efter uppvärmningen.

Resultaten från simuleringarna visa att reaktorernas design fungerar som önskat och att dom kan producera dom önskade temperaturprofilerna. Det visas även att designen för pyrolysreaktorn kan förbättras ytterligare genom att sätta det främre utloppsröret för sekundärgasen på reaktorns undersida istället för dess ovansida. Förändringen leder till en effektivare värmeöverföring till biomassan samt höjer dess temperatur genom hela reaktorn.

Analysen av driftparametrar som flöde och temperatur av sekundärgas, visar att dess temperatur påverkar processerna till en mycket större grad än dess massflöde. Genom att höja temperaturen kan flödet sänkas och hela processen blir mer energieffektiv, dock så leder det till en ökad instabilitet inom målområdet och om instabiliteten blir för stor så börjar temperaturprofilen gå ur målområdet.

Place, publisher, year, edition, pages
2014. , p. 54
Keyword [en]
Modelling, flows, reactors
Keyword [sv]
Modellering, flöden, reaktorer
National Category
Energy Engineering
Identifiers
URN: urn:nbn:se:kau:diva-33282OAI: oai:DiVA.org:kau-33282DiVA: diva2:735413
Educational program
Engineering: Energy and Environmental Engineering (300 ECTS credits)
Supervisors
Examiners
Available from: 2014-08-06 Created: 2014-07-27 Last updated: 2014-08-06Bibliographically approved

Open Access in DiVA

fulltext(5634 kB)409 downloads
File information
File name FULLTEXT01.pdfFile size 5634 kBChecksum SHA-512
34cd078e0ba250ff114383c9b50c42996680551ff874001f0a19e86ebacc005d54c7674f970059f86db6e083e090ae2b9abc4339eda579ede6a11f5c3484c8bf
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Andersson, Tim
By organisation
Department of Engineering and Chemical Sciences
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 409 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1197 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf