Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analyzing European National Accounts Data for Detection of anomalous observation
Örebro University, Örebro University School of Business.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Place, publisher, year, edition, pages
2014. , 23 p.
National Category
Probability Theory and Statistics
Identifiers
URN: urn:nbn:se:oru:diva-35667OAI: oai:DiVA.org:oru-35667DiVA: diva2:732308
Subject / course
Statistik
Supervisors
Examiners
Available from: 2014-07-03 Created: 2014-07-03 Last updated: 2017-10-17Bibliographically approved

Open Access in DiVA

Analyzing European National Accounts Data(911 kB)120 downloads
File information
File name FULLTEXT01.pdfFile size 911 kBChecksum SHA-512
cf5bddb162268d910fdf7b6927228190b66768a6ef88dddeac8478381a0813b5f266661e56c4425e97b3663cabd4d7812927771136294518cfbf7c1a352f7432
Type fulltextMimetype application/pdf

By organisation
Örebro University School of Business
Probability Theory and Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 120 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 311 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf