Change search
ReferencesLink to record
Permanent link

Direct link
Airway mesenchymal cell death by mevalonate cascade inhibition: integration of autophagy, unfolded protein response and apoptosis focusing on Bcl2 family proteins
University of Manitoba, Canada.
University of Manitoba, Canada.
University of Manitoba, Canada.
University of Manitoba, Canada.
Show others and affiliations
2014 (English)In: Biochimica et Biophysica Acta. Molecular Cell Research, ISSN 0167-4889, Vol. 1843, no 7, 1259-1271 p.Article in journal (Refereed) Published
Abstract [en]

HMG-CoA reductase, the proximal rate-limiting enzyme in the mevalonate pathway, is inhibited by statins. Beyond their cholesterol lowering impact, statins have pleiotropic effects and their use is linked to improved lung health. We have shown that mevalonate cascade inhibition induces apoptosis and autophagy in cultured human airway mesenchymal cells. Here, we show that simvastatin also induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) in these cells. We tested whether coordination of ER stress, autophagy and apoptosis determines survival or demise of human lung mesenchymal cells exposed to statin. We observed that simvastatin exposure activates UPR (activated transcription factor 4, activated transcription factor 6 and IRE1 alpha) and caspase-4 in primary human airway fibroblasts and smooth muscle cells. Exogenous mevalonate inhibited apoptosis, autophagy and UPR, but exogenous cholesterol was without impact, indicating that sterol intermediates are involved with mechanisms mediating statin effects. Caspase-4 inhibition decreased simvastatin-induced apoptosis, whereas inhibition of autophagy by ATG7 or ATG3 knockdown significantly increased cell death. In BAX(-/-)/BAIC(-/) murine embryonic fibroblasts, simvastatin-triggered apoptotic and UPR events were abrogated, but autophagy flux was increased leading to cell death via necrosis. Our data indicate that mevalonate cascade inhibition, likely associated with depletion of sterol intermediates, can lead to cell death via coordinated apoptosis, autophagy, and ER stress. The interplay between these pathways appears to be principally regulated by autophagy and Bcl-2-family pro-apoptotic proteins. These findings uncover multiple mechanisms of action of statins that could contribute to refining the use of such agent in treatment of lung disease.

Place, publisher, year, edition, pages
Elsevier, 2014. Vol. 1843, no 7, 1259-1271 p.
Keyword [en]
Statin, Cell deat, Endoplasmic reticulum stress, Fibroblast
National Category
Medical and Health Sciences
URN: urn:nbn:se:liu:diva-108152DOI: 10.1016/j.bbamcr.2014.03.006ISI: 000336713600003PubMedID: 24637330OAI: diva2:729662
Available from: 2014-06-26 Created: 2014-06-26 Last updated: 2014-10-28Bibliographically approved

Open Access in DiVA

Fulltext(3567 kB)186 downloads
File information
File name FULLTEXT01.pdfFile size 3567 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Los, Marek Jan
By organisation
Division of Cell BiologyFaculty of Health Sciences
In the same journal
Biochimica et Biophysica Acta. Molecular Cell Research
Medical and Health Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 186 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 78 hits
ReferencesLink to record
Permanent link

Direct link