Change search
ReferencesLink to record
Permanent link

Direct link
Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction
Forest Ecology, ETH Zürich, Switzerland.
Show others and affiliations
2007 (English)In: Atmospheric Chemistry And Physics, ISSN 1680-7316, E-ISSN 1680-7324, Vol. 7, no 1, 31-53 p.Article in journal (Refereed) Published
Abstract [en]

In recent years evidence has emerged that the amount of isoprene emitted from a leaf is affected by the CO2 growth environment. Many - though not all - laboratory experiments indicate that emissions increase significantly at below-ambient CO2 concentrations and decrease when concentrations are raised to above-ambient. A small number of process-based leaf isoprene emission models can reproduce this CO2 stimulation and inhibition. These models are briefly reviewed, and their performance in standard conditions compared with each other and to an empirical algorithm. One of the models was judged particularly useful for incorporation into a dynamic vegetation model framework, LPJ-GUESS, yielding a tool that allows the interactive effects of climate and increasing CO2 concentration on vegetation distribution, productivity, and leaf and ecosystem isoprene emissions to be explored. The coupled vegetation dynamics-isoprene model is described and used here in a mode particularly suited for the ecosystem scale, but it can be employed at the global level as well. Annual and/or daily isoprene emissions simulated by the model were evaluated against flux measurements ( or model estimates that had previously been evaluated with flux data) from a wide range of environments, and agreement between modelled and simulated values was generally good. By using a dynamic vegetation model, effects of canopy composition, disturbance history, or trends in CO2 concentration can be assessed. We show here for five model test sites that the suggested CO2-inhibition of leaf-isoprene metabolism can be large enough to offset increases in emissions due to CO2-stimulation of vegetation productivity and leaf area growth. When effects of climate change are considered atop the effects of atmospheric composition the interactions between the relevant processes will become even more complex. The CO2-isoprene inhibition may have the potential to significantly dampen the expected steep increase of ecosystem isoprene emission in a future, warmer atmosphere with higher CO2 levels; this effect raises important questions for projections of future atmospheric chemistry, and its connection to the terrestrial vegetation and carbon cycle.

Place, publisher, year, edition, pages
2007. Vol. 7, no 1, 31-53 p.
National Category
Meteorology and Atmospheric Sciences
URN: urn:nbn:se:umu:diva-86262ISI: 000243417800001OAI: diva2:724791
Available from: 2014-06-13 Created: 2014-02-20 Last updated: 2015-02-17Bibliographically approved

Open Access in DiVA

fulltext(1777 kB)58 downloads
File information
File name FULLTEXT01.pdfFile size 1777 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Wolf, Annett
In the same journal
Atmospheric Chemistry And Physics
Meteorology and Atmospheric Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 58 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 47 hits
ReferencesLink to record
Permanent link

Direct link