References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt147",{id:"formSmash:upper:j_idt147",widgetVar:"widget_formSmash_upper_j_idt147",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt148_j_idt150",{id:"formSmash:upper:j_idt148:j_idt150",widgetVar:"widget_formSmash_upper_j_idt148_j_idt150",target:"formSmash:upper:j_idt148:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Constant mean curvature surfaces in hyperbolic 3-spacePrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. , 36 p.
##### Series

FYSAST, FYSKAND1010
##### Keyword [en]

String theory, hyperbolic 3-space, DPW-method
##### National Category

Other Physics Topics
##### Identifiers

URN: urn:nbn:se:uu:diva-225923OAI: oai:DiVA.org:uu-225923DiVA: diva2:722890
##### Educational program

Bachelor Programme in Physics
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt382",{id:"formSmash:j_idt382",widgetVar:"widget_formSmash_j_idt382",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt389",{id:"formSmash:j_idt389",widgetVar:"widget_formSmash_j_idt389",multiple:true});
##### Examiners

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt396",{id:"formSmash:j_idt396",widgetVar:"widget_formSmash_j_idt396",multiple:true});
Available from: 2014-06-24 Created: 2014-06-09 Last updated: 2014-06-24Bibliographically approved

The aim of this bachelor's thesis has been to investigate surfaces that are the main contributions to scattering amplitudes in a type of string theory. These are constant mean curvature surfaces in hyperbolic 3-space. Classically the way to find such surfaces has been to solve a non-linear partial differential equation. In many spaces constant mean curvature surfaces are intimately connected to certain harmonic maps, known as the Gauss maps. In 1995 Dorfmeister, Pedit, and Wu established a method for constructing harmonic maps into so-called symmetric spaces. I investigate a generalization of this method that can be applied to find constant mean curvature surfaces in hyperbolic 3-space by using the intimate connection between these surfaces and harmonic maps. This method relies on a factorization of a Lie-group valued map. I show an explicit method for finding the factorization in terms of what is known as the Birkhoff factorization. Because approximation methods for the Birkhoff factorization are known, this allowed me to use the method constructively to find constant mean curvature surfaces in hyperbolic 3-space.

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1090",{id:"formSmash:lower:j_idt1090",widgetVar:"widget_formSmash_lower_j_idt1090",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1091_j_idt1093",{id:"formSmash:lower:j_idt1091:j_idt1093",widgetVar:"widget_formSmash_lower_j_idt1091_j_idt1093",target:"formSmash:lower:j_idt1091:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});