Change search
ReferencesLink to record
Permanent link

Direct link
Thermal energy recovery of low grade waste heat in hydrogenation process
Karlstad University, Faculty of Health, Science and Technology (starting 2013).
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Återvinning av lågvärdig spillvärme från en hydreringsprocess (Swedish)
Abstract [en]

The waste heat recovery technologies have become very relevant since many industrial plants continuously reject large amounts of thermal energy during normal operation which contributes to the increase of the production costs and also impacts the environment.

The simulation programs used in industrial engineering enable development and optimization of the operational processes in a cost-effective way.

The company Chematur Engineering AB, which supplies chemical plants in many different fields of use on a worldwide basis, was interested in the investigation of the possibilities for effective waste heat recovery from the hydrogenation of dinitrotoluene, which is a sub-process in the toluene diisocyanate manufacture plant. The project objective was to implement waste heat recovery by application of the Organic Rankine Cycle and the Absorption Refrigeration Cycle technologies. Modeling and design of the Organic Rankine Cycle and the Absorption Refrigeration Cycle systems was performed by using Aspen Plus® simulation software where the waste heat carrier was represented by hot water, coming from the internal cooling system in the hydrogenation process. Among the working fluids investigated were ammonia, butane, isobutane, propane, R-123, R-134a, R-227ea, R-245fa, and ammonia-water and LiBr-water working pairs. The simulations have been performed for different plant capacities with different temperatures of the hydrogenation process. The results show that the application of the Organic Rankine Cycle technology is the most feasible solution where the use of ammonia, R-123, R-245fa and butane as the working fluids is beneficial with regards to power production and pay-off time, while R-245fa and butane are the most sustainable choices considering the environment.

Place, publisher, year, edition, pages
2014. , 59 p.
Keyword [en]
Low-grade waste heat, Waste heat recovery, Organic Rankine Cycle, Absorption Refrigeration, Aspen Plus, Steady-state simulations, Modeling and design
National Category
Chemical Engineering
URN: urn:nbn:se:kau:diva-32335OAI: diva2:722451
External cooperation
Chematur Engineering AB
Subject / course
Chemical Engineering, Master of Science
Educational program
Engineering: Chemical Engineering (300 ECTS credits)
Available from: 2014-06-16 Created: 2014-06-08 Last updated: 2014-06-24Bibliographically approved

Open Access in DiVA

fulltext(2225 kB)720 downloads
File information
File name FULLTEXT01.pdfFile size 2225 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
Faculty of Health, Science and Technology (starting 2013)
Chemical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 721 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 245 hits
ReferencesLink to record
Permanent link

Direct link