Change search
ReferencesLink to record
Permanent link

Direct link
Cohomology of the moduli space of curves of genus three with level two structure
Stockholm University, Faculty of Science, Department of Mathematics.
2014 (English)Licentiate thesis, monograph (Other academic)
Abstract [en]

In this thesis we investigate the moduli space M3[2] of curves of genus 3 equipped with a symplectic level 2 structure. In particular, we are interested in the cohomology of this space. We obtain cohomological information by decomposing M3[2] into a disjoint union of two natural subspaces, Q[2] and H3[2], and then making S7- resp. S8-equivariantpoint counts of each of these spaces separately.

Abstract [sv]

Målet med denna uppsats är att undersöka modulirummet M3[2] av kurvor av genus 3 med symplektisk nivå 2 struktur. Mer specifikt vill vi hitta informationom kohomologin av detta rum. För att uppnå detta delar vi först upp M[2] i en disjunkt union av två naturliga delrum, Q[2] och H3[2], och räknar därefter punkterna av dessa rum S7- respektive S8-ekvivariant.

Place, publisher, year, edition, pages
Stockholm: Department of Mathematics, Stockholm University , 2014. , 138 p.
Research Reports in Mathematics, ISSN 1401-5617 ; 4
Keyword [en]
Algebraic geometry, Moduli space, Cohomology, Symplectic structure, Point count
National Category
Geometry Algebra and Logic
Research subject
URN: urn:nbn:se:su:diva-103062ISBN: 978-91-7447-923-2 (print)OAI: diva2:715000
2014-05-22, 306, Hus 6, Kräftriket, Stockholm, 10:00 (English)
Available from: 2016-10-21 Created: 2014-04-30 Last updated: 2016-10-21Bibliographically approved

Open Access in DiVA

fulltext(709 kB)31 downloads
File information
File name FULLTEXT02.pdfFile size 709 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bergvall, Olof
By organisation
Department of Mathematics
GeometryAlgebra and Logic

Search outside of DiVA

GoogleGoogle Scholar
Total: 219 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 705 hits
ReferencesLink to record
Permanent link

Direct link