Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Scalable Persisting and Querying of Streaming Data by Utilizing a NoSQL Data Store
Uppsala University, Disciplinary Domain of Science and Technology, Mathematics and Computer Science, Department of Information Technology.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Relational databases provide technology for scalable queries over persistent data. In many application scenarios a problem with conventional relational database technology is that loading large data logs produced at high rates into a database management system (DBMS) may not be fast enough, because of the high cost of indexing and converting data during loading. As an alternative a modern indexed parallel NoSQL data store, such as MongoDB, can be utilized. In this work, MongoDB was investigated for the performance of loading, indexing, and analyzing data logs of sensor readings. To investigate the trade-offs with the approach compared torelational database technology, a benchmark of log files from an industrial application was used for performance evaluation. For scalable query performance indexing is required. The evaluation covers both the loading time for the log files and the execution time of basic queries over loaded log data with and without indexes. As a comparison, we investigated the performance of using a popular open source relational DBMS and a DBMS from a major commercial vendor. The implementation, called AMI (Amos Mongo Interface), provides an interface between MongoDB and an extensible main-memory DBMS, Amos II, where different kinds of back-end storagemanagers and DBMSs can be interfaced. AMI enables general on-line analyzes through queries of data streams persisted in MongoDB as a back-end data store. It furthermore enables integration of NoSQL and SQL databases through queries to Amos II. The performance investigation used AMI to analyze the performance of MongoDB, while the relational DBMSs were analyzed by utilizing the existing relational DBMS interfaces of Amos II.

Place, publisher, year, edition, pages
2014.
Series
IT, 14 021
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:uu:diva-223944OAI: oai:DiVA.org:uu-223944DiVA: diva2:714511
Educational program
Master Programme in Computer Science
Supervisors
Examiners
Available from: 2014-04-28 Created: 2014-04-28 Last updated: 2014-04-28Bibliographically approved

Open Access in DiVA

fulltext(1060 kB)172 downloads
File information
File name FULLTEXT01.pdfFile size 1060 kBChecksum SHA-512
e046a5f464967168aa84d87d04c18ee9261dc77a4e72f98978b72287a44d630b5eaa46522a218045e269adaa44d66dbada1efd6fc5fceff135d93484972ca29b
Type fulltextMimetype application/pdf

By organisation
Department of Information Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 172 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 590 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf