Change search
ReferencesLink to record
Permanent link

Direct link
Improving the CO2 performance of cement, part II: Framework for assessing CO2 improvement measures in cement industry
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-6736-6125
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-8323-881X
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
Show others and affiliations
2015 (English)In: Journal of Cleaner Production, ISSN 0959-6526, Vol. 98, 282-291 p.Article in journal (Refereed) Published
Abstract [en]

Cement production is among the largest anthropogenic sources of carbon dioxide (CO2) and there is considerable pressure on the cement industry to reduce these emissions. In the effort to reduce CO2 emissions, there is a need for methods to systematically identify, classify and assess different improvement measures, to increase the knowledge about different options and prioritize between them. For this purpose a framework for assessment has been developed, inspired by common approaches within the fields of environmental systems analysis and industrial symbiosis. The aim is to apply a broad systems perspective and through the use of multiple criteria related to technologies and organization strategies facilitate informed decision-making regarding different CO2 performance measures in the cement industry.

The integrated assessment framework consists of two parts: a generic and a case-specific part. It is applied to a cement production cluster in Germany called Cluster West, consisting of three cement plants owned by CEMEX. The framework can be used in different ways. It can be used as a tool to perform literature reviews and categorize the state-of-the-art knowledge about options to improve the CO2 performance. It can also be used to assess options for the cement industry in general as well as for individual plants.

This paper describes the assessment framework, the ideas behind it, its components and the process of carrying out the assessment. The first part provides a structured overview of the options for improvement for the cement industry in general, while the second part is a case-specific application for Cluster West, providing information about the feasibility for different categories of measures that can reduce the CO2 emissions. The overall impression from the project is that the framework was successfully established and, when applied, facilitated strategic discussions and decision-making. Such frameworks can be utilized to systematically assess hundreds of different measures and identify the ones most feasible and applicable for implementation, within the cement industry but also possibly in other sectors. The results demonstrated that even in a relatively synergistic and efficient production system, like Cluster West, there are opportunities for improvement, especially if options beyond “production efficiency” are considered.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 98, 282-291 p.
Keyword [en]
industrial ecology, cement, CO2 emissions, industrial symbiosis, environmental assessment framework, integrated assessment
National Category
Environmental Management
URN: urn:nbn:se:liu:diva-105940DOI: 10.1016/j.jclepro.2014.01.103ISI: 000356194300029OAI: diva2:712457

On the day of the defence date the status of this article was Manuscript.

Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2016-08-24Bibliographically approved
In thesis
1. Industrial Ecology and Development of Production Systems: Analysis of the CO2  Footprint of Cement
Open this publication in new window or tab >>Industrial Ecology and Development of Production Systems: Analysis of the CO2  Footprint of Cement
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This research is an attempt to create a comprehensive assessment framework for identifying and assessing potential improvement options of cement production systems.

From an environmental systems analysis perspective, this study provides both an empirical account and a methodological approach for quantifying the CO2 footprint of a cement production system. An attributional Life Cycle Assessment (LCA) is performed to analyze the CO2 footprint of several products of a cement production system in Germany which consists of three dierent plants. Based on the results of the LCA study, six key performance indicators are dened as the basis for a simplied LCA model. This model is used to quantify the CO2 footprint of dierent versions of the cement production system.

In order to identify potential improvement options, a framework for Multi-Criteria Assessment (MCA) is developed. The search and classication guideline of this framework is based on the concepts of Cleaner Production, Industrial Ecology, and Industrial Symbiosis. It allows systematic identication and classication of potential improvement options. In addition, it can be used for feasibility and applicability evaluation of dierent options. This MCA is applied both on a generic level, reecting the future landscape of the industry, and on a production organization level re ecting the most applicable possibilities for change. Based on this assessment a few appropriate futureoriented scenarios for the studied cement production system are constructed. The simplied LCA model is used to quantify the CO2 footprint of the production system for each scenario.

By integrating Life Cycle Assessment and Multi-Criteria Assessment approaches, this study provides a comprehensive assessment method for identifying suitable industrial developments and quantifying the CO2 footprint improvements that might be achieved by their implementation.

The results of this study emphasis, although by utilizing alternative fuels and more ecient production facility, it is possible to improve the CO2 footprint of clinker, radical improvements can be achieved on the portfolio level. Compared to Portland cement, very high reduction of CO2 footprint can be achieved if clinker is replaced with low carbon alternatives, such as Granulated Blast Furnace Slag (GBFS) which are the by-products of other  industrial production. Benchmarking a cement production system by its portfolio product is therefore a more reasonable approach, compared to focusing on the performance of its clinker production.

This study showed that Industrial Symbiosis, that is, over the fence initiatives for material and energy exchanges and collaboration with nontraditional partners, are relevant to cement industry. However, the contingent nature of these strategies should always be noted, because the mere exercise of such activities may not lead to a more resource ecient production system. Therefore, in search for potential improvements, it is important to keep the search horizon as wide as possible, however, assess the potential improvements in each particular case. The comprehensive framework developed and applied in this research is an attempt in this direction.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 54 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1660
industrial ecology, industrial symbiosis, industrial development, life cycle assessment, multi-criteria assessment, CO2 footprint, cement
National Category
Environmental Management Environmental Engineering
urn:nbn:se:liu:diva-105942 (URN)10.3384/lic.diva-105942 (DOI)LIU-TEK-LIC-2014:93 (Local ID)978-91-7519-331-1 (print) (ISBN)LIU-TEK-LIC-2014:93 (Archive number)LIU-TEK-LIC-2014:93 (OAI)
2014-04-29, A34, A-huset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2014-10-08Bibliographically approved
2. Systems Analysis for Eco-Industrial Development: Applied on Cement and Biogas Production Systems
Open this publication in new window or tab >>Systems Analysis for Eco-Industrial Development: Applied on Cement and Biogas Production Systems
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Systemanalys för ekoindustriell utveckling : tillämpadpå cement och biogas produktion
Abstract [en]

Our industrial systems are not sustainable—a major challenge which demands several types of responses. Eco-industrial development can be seen as such a response, with the goal to establish industrial systems that are both ecological and economical. Industrial Ecology is another closely related response. It is based on the idea that natural systems can be used to understand how to design sustainable industrial systems, for example, by shifting from linear industrial processes to cyclic systems, where waste streams can be avoided or minimized through utilization as raw materials for other processes. In this thesis, the possible contributions of industrial ecology/symbiosis to eco-industrial development are investigated through the use of systems analysis approaches. Two systems analysis methods are used: life-cycle assessment and multi-criteria analysis. These methods are applied on two types of industrial systems: cement and biogas.

Cement is among the most used materials in the world with extensive resource consumption and environmental impact, manifested for example by the high levels of CO2 emissions. Multi-criteria analysis was used to identify, classify, and assess different measures to improve the climate performance of cement production, while life-cycle assessment was employed to quantify the CO2 emissions. Combined, multi-criteria analysis and life-cycle assessment were used for an integrated assessment of different eco-industrial development paths. Most of the feasible and resource-efficient improvement measures were related to utilization of secondary resources, for example minimizing the clinker content of the cement by replacing it with by-products from steel and iron manufacturing, or using refuse-derived fuels. Effective utilization of these secondary raw materials and fuels can be achieved through industrial symbiosis.

Biogas is viewed as part of a larger transition towards a bio-based economy where resources—bio-materials and bio-energy—are used in a cascading, circular, and renewable manner. Multi-criteria analysis was used to assess the feasibility and resource efficiency of using different types of biomass as feedstock for biogas and biofertilizer production. In addition to aspects such as renewable energy and nutrient recycling, cost efficiency, institutional conditions, environmental performance, the potential per unit, and the overall potential were considered. In another study, life-cycle assessment was used to analyze the environmental performance of biogas production from source-sorted food waste using a dry digestion process. The study showed that the performance of this dry process is superior to most of the existing wet biogas processes in Sweden. The critical sources of uncertainty and their impact on the overall performance of the system were analyzed. Factors influencing methane production, as well as processes related to soil after the digestate is applied as biofertilizer on land, have the greatest influence on the performance of these systems.

For both cement and biogas systems industrial symbiosis involving collaboration and better utilization of local/regional secondary resources, can result in resource-efficient eco-industrial development. Life-cycle assessment and multi-criteria approaches can serve as two complementary methods for investigating the feasibility, potential, and resource efficiency of different development paths. These approaches can provide input into decision-making processes and lead to more informed decisions.

Abstract [sv]

Våra industriella system är inte hållbara—en stor utmaning som kräver olika typer av åtgärder. Ekoindustriell utveckling kan betraktas som en sådan åtgärd, eller respons, med avsikten att etablera industriella system som både är sunda ekonomiskt och ekologiskt. Industriell ekologi är en annan och närbesläktad respons, baserad på idén att naturliga system kan användas som förebilder, för att förstå hur hållbara industriella system kan designas. Det kan tillexempel handla om ett skifte från linjära industriella processer till cykliska, där avfallsströmmar kan undvikas eller minimeras genom att de omvandlas till råvaror för andra processer. I den här avhandlingen undersöks om och hur industriell ekologi/symbios kan bidra till fortsatt ekoindustriell utveckling, genom användning av systemanalysmetoder. Två typer av industriella system står i fokus: cement- och biogasproduktion. Vidare används två typer av miljösystemanalytiska metoder: livscykelanalys och multikriterieanalys.

Cement är ett av världens mest använda material och är förknippat med omfattande resursanvändning och stor miljöpåverkan, exempelvis i form av höga utsläpp av koldioxid. Multikriterieanalys användes för att identifiera, klassificera och bedöma ett flertal förbättringsåtgärder som kan ge bättre klimatprestanda. Livscykelanalys användes för att kvantifiera utsläppen av koldioxid. Kombinerade användes multikriterieanalys och livscykelanalys för en form av integrerad bedömning av olika ekoindustriella utvecklingsvägar för cementindustrin. De flesta förbättringsåtgärderna som bedömdes vara genförbara och resurseffektiva var kopplade till användning av sekundära resurser, exempelvis i form av att mängden cementklinker minimerades och ersattes av restprodukter från järn- och stålindustrin samt att  avfall användes som bränsle. Effektiv användning av den här typen av sekundära material kan realiseras genom industriell symbios.

Biogas ses som en del i en större omställning i riktning mot en biobaserad ekonomi, där biomaterial och bioenergi används i kaskadsystem —förnyelsebart och cirkulärt. Multikriterieanalys tillämpades för att utvärdera genomförbarhet och resurseffektivitet för olika substrat till biogas- och biogödselproduktion. Aspekter avseende förnyelsebar energi och näringscirkulering beaktades, även kostnadseffektivitet, sociala och institutionella förutsättningar, miljöprestanda, potentialen per enhet samt potentialen totalt. I en annan studie användes livscykelanalys för att studera miljöprestandan för biogasproduktion baserad på utsorterat matavfall i en torr rötningsprocess. Studien visade att den torra processen hade bättre eller likvärdig prestanda jämfört med många av de våta processer som används för motsvarande ändamål i Sverige. Kritiska källor till osäkerheter och deraspåverkan på den totala prestandan för systemet analyserades. Störst betydelse hade de faktorer som påverkar metanproduktionen samt processer i jorden/marken efter att digestatet lagts ut som biogödsel.

Både för cement och biogassystem kan industriell symbios, som involverar samverkan mellan lokala/regionala aktörer och användning av sekundära resurser, leda till resurseffektiv ekoindustriell utveckling. Livscykelanalys och multikriterieanalys kan användas som två kompletterade metodologiska approacher för att undersöka genomförbarhet, potential och resurseffektivitet för olika utvecklingsvägar. Dessa metoder kan bidra till beslutsfattandet och stödja mer välgrundade beslut.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 125 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1780
industrial ecology, eco-industrial development, multi-criteria analysis, life-cycle assessment, MCA, LCA, uncertainty management, systems analysis, industrial symbiosis, cement, biogas, cement production, biogas solutions
National Category
Environmental Management
urn:nbn:se:liu:diva-130782 (URN)9789176857083 (Print) (ISBN)
Public defence
2016-09-09, ACAS, A-Building, Campus Valla, Linköping University, Linköping, 14:22 (English)
Swedish Energy Agency
Available from: 2016-08-23 Created: 2016-08-23 Last updated: 2016-08-23Bibliographically approved

Open Access in DiVA

fulltext(1105 kB)63 downloads
File information
File name FULLTEXT01.pdfFile size 1105 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Feiz, RoozbehAmmenberg, JonasBaas, LeoEklund, MatsHelgstrand, Anton
By organisation
Environmental Technology and ManagementThe Institute of Technology
In the same journal
Journal of Cleaner Production
Environmental Management

Search outside of DiVA

GoogleGoogle Scholar
Total: 63 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 131 hits
ReferencesLink to record
Permanent link

Direct link