Change search
ReferencesLink to record
Permanent link

Direct link
Improving the CO2 performance of cement, part III: The relevance of industrial symbiosis and how to measure its impact
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-8323-881X
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Environmental Technology and Management. Linköping University, The Institute of Technology.ORCID iD: 0000-0002-6736-6125
Show others and affiliations
2015 (English)In: Journal of Cleaner Production, ISSN 0959-6526, Vol. 98, 145-155 p.Article in journal (Refereed) Published
Abstract [en]

Cement production contributes to extensive CO2 emissions. However, the climate impact can vary significantly between different production systems and different types of cement products. The market is dominated by ordinary Portland cement, which is based on primary raw materials and commonly associated with combustion of vast amounts of fossil fuels. Therefore, the production of Portland cement can be described as a rather linear process. But there are alternative options, for example, involving large amounts of industrial byproducts and renewable energy which are more cyclic and thus can be characterized as relatively “synergistic”.

The main purpose of this article is to study how relevant the leading ideas of industrial symbiosis are for the cement industry based on a quantitative comparison of the CO2 emissions from different cement production systems and products, both existing and hypothetical. This has been done by studying a group of three cement plants in Germany, denoted as ClusterWest, and the production of cement clinker and three selected cement products. Based on this analysis and literature, it is discussed to what extent industrial symbiosis options can lead to reduced CO2 emissions, for Cluster West and the cement industry in general.

Utilizing a simplified LCA model (“cradle to gate”), it was shown that the CO2 emissions from Cluster West declined by 45% over the period 1997e2009, per tonne of average cement. This was mainly due to a large share of blended cement, i.e., incorporation of byproducts from local industries as supplementary cementitious materials. For producers of Portland cement to radically reduce the climate impact it is necessary to engage with new actors and find fruitful cooperation regarding byproducts, renewable energy and waste heat. Such a development is very much in line with the key ideas of industrial ecology and industrial symbiosis, meaning that it appears highly relevant for the cement industry to move further in this direction. From a climate perspective, it is essential that actors influencing the cement market acknowledge the big difference between different types of cement, where an enlarged share of blended cement products (substituting clinker with byproducts such as slag and fly ash) offers a great scope for future reduction of CO2 emissions.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 98, 145-155 p.
Keyword [en]
Cement, CO2 emissions, Life cycle assessment (LCA), Industrial symbiosis Granulated Blast Furnace Slag (GBFS)
National Category
Environmental Management
URN: urn:nbn:se:liu:diva-105941DOI: 10.1016/j.jclepro.2014.01.086ISI: 000356194300015OAI: diva2:712452
Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2016-08-24Bibliographically approved
In thesis
1. Industrial Ecology and Development of Production Systems: Analysis of the CO2  Footprint of Cement
Open this publication in new window or tab >>Industrial Ecology and Development of Production Systems: Analysis of the CO2  Footprint of Cement
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

This research is an attempt to create a comprehensive assessment framework for identifying and assessing potential improvement options of cement production systems.

From an environmental systems analysis perspective, this study provides both an empirical account and a methodological approach for quantifying the CO2 footprint of a cement production system. An attributional Life Cycle Assessment (LCA) is performed to analyze the CO2 footprint of several products of a cement production system in Germany which consists of three dierent plants. Based on the results of the LCA study, six key performance indicators are dened as the basis for a simplied LCA model. This model is used to quantify the CO2 footprint of dierent versions of the cement production system.

In order to identify potential improvement options, a framework for Multi-Criteria Assessment (MCA) is developed. The search and classication guideline of this framework is based on the concepts of Cleaner Production, Industrial Ecology, and Industrial Symbiosis. It allows systematic identication and classication of potential improvement options. In addition, it can be used for feasibility and applicability evaluation of dierent options. This MCA is applied both on a generic level, reecting the future landscape of the industry, and on a production organization level re ecting the most applicable possibilities for change. Based on this assessment a few appropriate futureoriented scenarios for the studied cement production system are constructed. The simplied LCA model is used to quantify the CO2 footprint of the production system for each scenario.

By integrating Life Cycle Assessment and Multi-Criteria Assessment approaches, this study provides a comprehensive assessment method for identifying suitable industrial developments and quantifying the CO2 footprint improvements that might be achieved by their implementation.

The results of this study emphasis, although by utilizing alternative fuels and more ecient production facility, it is possible to improve the CO2 footprint of clinker, radical improvements can be achieved on the portfolio level. Compared to Portland cement, very high reduction of CO2 footprint can be achieved if clinker is replaced with low carbon alternatives, such as Granulated Blast Furnace Slag (GBFS) which are the by-products of other  industrial production. Benchmarking a cement production system by its portfolio product is therefore a more reasonable approach, compared to focusing on the performance of its clinker production.

This study showed that Industrial Symbiosis, that is, over the fence initiatives for material and energy exchanges and collaboration with nontraditional partners, are relevant to cement industry. However, the contingent nature of these strategies should always be noted, because the mere exercise of such activities may not lead to a more resource ecient production system. Therefore, in search for potential improvements, it is important to keep the search horizon as wide as possible, however, assess the potential improvements in each particular case. The comprehensive framework developed and applied in this research is an attempt in this direction.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 54 p.
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1660
industrial ecology, industrial symbiosis, industrial development, life cycle assessment, multi-criteria assessment, CO2 footprint, cement
National Category
Environmental Management Environmental Engineering
urn:nbn:se:liu:diva-105942 (URN)10.3384/lic.diva-105942 (DOI)LIU-TEK-LIC-2014:93 (Local ID)978-91-7519-331-1 (print) (ISBN)LIU-TEK-LIC-2014:93 (Archive number)LIU-TEK-LIC-2014:93 (OAI)
2014-04-29, A34, A-huset, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2014-10-08Bibliographically approved
2. Systems Analysis for Eco-Industrial Development: Applied on Cement and Biogas Production Systems
Open this publication in new window or tab >>Systems Analysis for Eco-Industrial Development: Applied on Cement and Biogas Production Systems
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Systemanalys för ekoindustriell utveckling : tillämpadpå cement och biogas produktion
Abstract [en]

Our industrial systems are not sustainable—a major challenge which demands several types of responses. Eco-industrial development can be seen as such a response, with the goal to establish industrial systems that are both ecological and economical. Industrial Ecology is another closely related response. It is based on the idea that natural systems can be used to understand how to design sustainable industrial systems, for example, by shifting from linear industrial processes to cyclic systems, where waste streams can be avoided or minimized through utilization as raw materials for other processes. In this thesis, the possible contributions of industrial ecology/symbiosis to eco-industrial development are investigated through the use of systems analysis approaches. Two systems analysis methods are used: life-cycle assessment and multi-criteria analysis. These methods are applied on two types of industrial systems: cement and biogas.

Cement is among the most used materials in the world with extensive resource consumption and environmental impact, manifested for example by the high levels of CO2 emissions. Multi-criteria analysis was used to identify, classify, and assess different measures to improve the climate performance of cement production, while life-cycle assessment was employed to quantify the CO2 emissions. Combined, multi-criteria analysis and life-cycle assessment were used for an integrated assessment of different eco-industrial development paths. Most of the feasible and resource-efficient improvement measures were related to utilization of secondary resources, for example minimizing the clinker content of the cement by replacing it with by-products from steel and iron manufacturing, or using refuse-derived fuels. Effective utilization of these secondary raw materials and fuels can be achieved through industrial symbiosis.

Biogas is viewed as part of a larger transition towards a bio-based economy where resources—bio-materials and bio-energy—are used in a cascading, circular, and renewable manner. Multi-criteria analysis was used to assess the feasibility and resource efficiency of using different types of biomass as feedstock for biogas and biofertilizer production. In addition to aspects such as renewable energy and nutrient recycling, cost efficiency, institutional conditions, environmental performance, the potential per unit, and the overall potential were considered. In another study, life-cycle assessment was used to analyze the environmental performance of biogas production from source-sorted food waste using a dry digestion process. The study showed that the performance of this dry process is superior to most of the existing wet biogas processes in Sweden. The critical sources of uncertainty and their impact on the overall performance of the system were analyzed. Factors influencing methane production, as well as processes related to soil after the digestate is applied as biofertilizer on land, have the greatest influence on the performance of these systems.

For both cement and biogas systems industrial symbiosis involving collaboration and better utilization of local/regional secondary resources, can result in resource-efficient eco-industrial development. Life-cycle assessment and multi-criteria approaches can serve as two complementary methods for investigating the feasibility, potential, and resource efficiency of different development paths. These approaches can provide input into decision-making processes and lead to more informed decisions.

Abstract [sv]

Våra industriella system är inte hållbara—en stor utmaning som kräver olika typer av åtgärder. Ekoindustriell utveckling kan betraktas som en sådan åtgärd, eller respons, med avsikten att etablera industriella system som både är sunda ekonomiskt och ekologiskt. Industriell ekologi är en annan och närbesläktad respons, baserad på idén att naturliga system kan användas som förebilder, för att förstå hur hållbara industriella system kan designas. Det kan tillexempel handla om ett skifte från linjära industriella processer till cykliska, där avfallsströmmar kan undvikas eller minimeras genom att de omvandlas till råvaror för andra processer. I den här avhandlingen undersöks om och hur industriell ekologi/symbios kan bidra till fortsatt ekoindustriell utveckling, genom användning av systemanalysmetoder. Två typer av industriella system står i fokus: cement- och biogasproduktion. Vidare används två typer av miljösystemanalytiska metoder: livscykelanalys och multikriterieanalys.

Cement är ett av världens mest använda material och är förknippat med omfattande resursanvändning och stor miljöpåverkan, exempelvis i form av höga utsläpp av koldioxid. Multikriterieanalys användes för att identifiera, klassificera och bedöma ett flertal förbättringsåtgärder som kan ge bättre klimatprestanda. Livscykelanalys användes för att kvantifiera utsläppen av koldioxid. Kombinerade användes multikriterieanalys och livscykelanalys för en form av integrerad bedömning av olika ekoindustriella utvecklingsvägar för cementindustrin. De flesta förbättringsåtgärderna som bedömdes vara genförbara och resurseffektiva var kopplade till användning av sekundära resurser, exempelvis i form av att mängden cementklinker minimerades och ersattes av restprodukter från järn- och stålindustrin samt att  avfall användes som bränsle. Effektiv användning av den här typen av sekundära material kan realiseras genom industriell symbios.

Biogas ses som en del i en större omställning i riktning mot en biobaserad ekonomi, där biomaterial och bioenergi används i kaskadsystem —förnyelsebart och cirkulärt. Multikriterieanalys tillämpades för att utvärdera genomförbarhet och resurseffektivitet för olika substrat till biogas- och biogödselproduktion. Aspekter avseende förnyelsebar energi och näringscirkulering beaktades, även kostnadseffektivitet, sociala och institutionella förutsättningar, miljöprestanda, potentialen per enhet samt potentialen totalt. I en annan studie användes livscykelanalys för att studera miljöprestandan för biogasproduktion baserad på utsorterat matavfall i en torr rötningsprocess. Studien visade att den torra processen hade bättre eller likvärdig prestanda jämfört med många av de våta processer som används för motsvarande ändamål i Sverige. Kritiska källor till osäkerheter och deraspåverkan på den totala prestandan för systemet analyserades. Störst betydelse hade de faktorer som påverkar metanproduktionen samt processer i jorden/marken efter att digestatet lagts ut som biogödsel.

Både för cement och biogassystem kan industriell symbios, som involverar samverkan mellan lokala/regionala aktörer och användning av sekundära resurser, leda till resurseffektiv ekoindustriell utveckling. Livscykelanalys och multikriterieanalys kan användas som två kompletterade metodologiska approacher för att undersöka genomförbarhet, potential och resurseffektivitet för olika utvecklingsvägar. Dessa metoder kan bidra till beslutsfattandet och stödja mer välgrundade beslut.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2016. 125 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1780
industrial ecology, eco-industrial development, multi-criteria analysis, life-cycle assessment, MCA, LCA, uncertainty management, systems analysis, industrial symbiosis, cement, biogas, cement production, biogas solutions
National Category
Environmental Management
urn:nbn:se:liu:diva-130782 (URN)9789176857083 (Print) (ISBN)
Public defence
2016-09-09, ACAS, A-Building, Campus Valla, Linköping University, Linköping, 14:22 (English)
Swedish Energy Agency
Available from: 2016-08-23 Created: 2016-08-23 Last updated: 2016-08-23Bibliographically approved

Open Access in DiVA

fulltext(1092 kB)118 downloads
File information
File name FULLTEXT01.pdfFile size 1092 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Ammenberg, JonasBaas, LeoEklund, MatsFeiz, RoozbehHelgstrand, Anton
By organisation
Environmental Technology and ManagementThe Institute of Technology
In the same journal
Journal of Cleaner Production
Environmental Management

Search outside of DiVA

GoogleGoogle Scholar
Total: 118 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 237 hits
ReferencesLink to record
Permanent link

Direct link