Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Maskininlärningsmetoder för bildklassificering av elektroniska komponenter
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
2013 (Swedish)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Machine learning based image classification of electronic components (English)
Abstract [sv]

Micronic Mydata AB utvecklar och tillverkar maskiner för att automatisk montera elektroniska komponenter på kretskort, s.k. ”Pick and place” (PnP) maskiner. Komponenterna blir lokaliserade och inspekterade optiskt innan de monteras på kretskorten, för att säkerhetsställa att de monteras korrekt och inte är skadade. En komponent kan t.ex. plockas på sidan, vertikalt eller missas helt. Det nuvarande systemet räknar ut uppmätta parametrar så som: längd, bredd och kontrast.Projektet syftar till att undersöka olika maskininlärningsmetoder för att klassificera felaktiga plock som kan uppstå i maskinen. Vidare skall metoderna minska antalet defekta komponenter som monteras samt minska antalet komponenter som felaktigt avvisas. Till förfogande finns en databas innehållande manuellt klassificerade komponenter och tillhörande uppmätta parametrar och bilder. Detta kan användas som träningsdata för de maskininlärningsmetoder som undersöks och testas. Projektet skall även undersöka hur dessa maskininlärningsmetoder lämpar sig allmänt i mekatroniska produkter, med hänsyn till problem så som realtidsbegräsningar.Fyra olika maskininlärningsmetoder har blivit utvärderade och testade. Metoderna har blivit utvärderade för ett test set där den nuvarande metoden presterar mycket bra. Dels har de nuvarande parametrarna använts, samt en alternativ metod som extraherar parametrar (s.k. SIFT descriptor) från bilderna. De nuvarande parametrarna kan användas tillsammans med en SVM eller ett ANN och uppnå resultat som reducerar defekta och monterade komponenter med upp till 64 %. Detta innebär att dessa fel kan reduceras utan att uppgradera de nuvarande bildbehandlingsalgoritmerna. Genom att använda SIFT descriptor tillsammans med ett ANN eller en SVM kan de vanligare felen som uppstår klassificeras med en noggrannhet upp till ca 97 %. Detta överstiger kraftigt de resultat som uppnåtts när de nuvarande parametrarna har använts.

Abstract [en]

Micronic Mydata AB develops and builds machines for mounting electronic component onto PCBs, i.e. Pick and Place (PnP) machines. Before being mounted the components are localized and inspected optically, to ensure that the components are intact and picked correctly. Some of the errors which may occur are; the component is picked sideways, vertically or not picked at all. The current vision system computes parameter such as: length, width and contrast.The project strives to investigate and test machine learning approaches which enable automatic error classification. Additionally the approaches should reduce the number of defect components which are mounted, as well as reducing the number of components which are falsely rejected. At disposal is a large database containing the calculated parameters and images of manually classified components. This can be used as training data for the machine learning approaches. The project also strives to investigate how machine learning approaches can be implemented in mechatronic systems, and how limitations such as real-time constraints could affect the feasibility.Four machine learning approaches have been evaluated and verified against a test set where the current implementation performs very well. The currently calculated parameters have been used as inputs, as well as a new approach which extracts (so called SIFT descriptor) parameters from the raw images. The current parameters can be used with an ANN or a SVM and achieve results which reduce the number of poorly mounted components by up to 64 %. Hence, these defects can be decreased without updating the current vision algorithms. By using SIFT descriptors and an ANN or a SVM the more common classes can be classified with accuracies up to approximately 97 %. This greatly exceeds results achieved when using the currently computed parameters.

Place, publisher, year, edition, pages
2013. , 111 p.
Series
MMK 2013:65 MDA 453
Keyword [en]
Machine learning based image classification of electronic components
Keyword [sv]
Maskininlärningsmetoder för bildklassificering av elektroniska komponenter
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:kth:diva-144210OAI: oai:DiVA.org:kth-144210DiVA: diva2:712392
Supervisors
Examiners
Available from: 2014-04-15 Created: 2014-04-15 Last updated: 2014-04-15Bibliographically approved

Open Access in DiVA

Machine learning based image classification of electronic components(1766 kB)349 downloads
File information
File name FULLTEXT01.pdfFile size 1766 kBChecksum SHA-512
6ed070f9bf1f7a46f61f7e9a9e562386ceae50a257456ad928bae275fc7065971fb693b684838c6e38ec0f2e5af5e7837c60d0760b263f7c5261244445de3c5a
Type fulltextMimetype application/pdf

By organisation
Mechatronics
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 349 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 225 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf