Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Computational Model for Fracture Healing Integrated with Mechanical Stimulation and Growth Factors
KTH, School of Technology and Health (STH).
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Non-union bone fractures are a standing problem for clinical treatments. It has been found that the exogenous growth factor recombinant human bone morphogenetic protein-2 (rhBMP-2) induces bone healing in potential non-union fractures. However, the currently used clinical dose of rhBMP-2 is high and causes side-effects. Mechanical loading is known to enhance the induced effects of rhBMP-2 in bone healing, which may lead to a reduced required dose. Yet, the exact underlying mechanism is unknown.

To further investigate the combined role of mechanical loading and rhBMP-2 in the early phase of fracture healing a 2D computational model was developed. The model uses a lattice-based approach where biological rule-based events are combined with finite element analysis to simulate both untreated bone healing progression and when subjected to mechanical loading and rhBMP-2. Two healing cases were investigated:  normal fracture healing in a small bone defect (1 mm gap) and non-union fracture healing in a large bone defect (5 mm gap). By varying the magnitude and timing of applied load as well as the rhBMP-2 dose, a combination that would reduce the currently used rhBMP-2 dose and still enable healing in a large bone defect was searched.

The model could simulate fracture healing in a large bone defect when subjected to rhBMP-2, independently of the applied load. Also the expected non-union result in a large bone defect without applied rhBMP-2 was obtained. The model could not capture normal fracture healing in a small bone defect as well as bone remodelling.

It was found that a 50 % reduced rhBMP-2 dose could not induce healing in a large bone defect when applied separately but when applied together with load. Additionally, this combination of stimulation gave similar results compared to other combinations using higher rhBMP-2 doses.

To conclude, even though the model was able to replicate some of the healing events seen experimentally, it is in need of modifications to correct current deficiencies. Still, after some further development and validation, the model has the potential to be used in future studies of fracture healing when influenced by mechanical loading and rhBMP-2. The found possibility for a reduced dosage of rhBMP-2 when applied together with load has to be further investigated before any conclusions can be drawn.

Place, publisher, year, edition, pages
2014. , 91 p.
Series
TRITA-STH, 2014:2
Keyword [en]
Computational modelling; Non-union bone fracture; Fracture healing; Growth factors; BMP-2; rhBMP-2; Mechanical loading; FEM
National Category
Medical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-143536OAI: oai:DiVA.org:kth-143536DiVA: diva2:707469
External cooperation
Julius Wolff Institute
Subject / course
Medical Engineering
Educational program
Master of Science in Engineering - Medical Engineering
Supervisors
Examiners
Available from: 2014-10-15 Created: 2014-03-24 Last updated: 2014-10-15Bibliographically approved

Open Access in DiVA

Cassandra_Jernberg_Student_Thesis(6029 kB)533 downloads
File information
File name FULLTEXT01.pdfFile size 6029 kBChecksum SHA-512
ae2dd9bcf6989d2e82340db0d4d6b6e9a0b58d39c110ca3a54ec7b3bd2e61ce0423df5c25e1ff2f313e5b87c2bb41e95027d355310230ba9d6160aa6f03ef3fc
Type fulltextMimetype application/pdf

By organisation
School of Technology and Health (STH)
Medical Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 533 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 384 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf