CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt165",{id:"formSmash:upper:j_idt165",widgetVar:"widget_formSmash_upper_j_idt165",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt166_j_idt168",{id:"formSmash:upper:j_idt166:j_idt168",widgetVar:"widget_formSmash_upper_j_idt166_j_idt168",target:"formSmash:upper:j_idt166:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Bootstrap percolation on Galton-Watson treesPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true}); PrimeFaces.cw("SelectBooleanButton","widget_formSmash_j_idt248",{id:"formSmash:j_idt248",widgetVar:"widget_formSmash_j_idt248",onLabel:"Hide others and affiliations",offLabel:"Show others and affiliations"});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)In: Electronic Journal of Probability, ISSN 1083-6489, E-ISSN 1083-6489, Vol. 19, 1-27 p.Article in journal (Refereed) Published
##### Abstract [en]

##### Place, publisher, year, edition, pages

2014. Vol. 19, 1-27 p.
##### Keyword [en]

bootstrap percolation, branching number, infinite trees, Galton-Watson trees
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:uu:diva-220817DOI: 10.1214/EJP.v19-2758ISI: 000331471000001OAI: oai:DiVA.org:uu-220817DiVA: diva2:706624
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt476",{id:"formSmash:j_idt476",widgetVar:"widget_formSmash_j_idt476",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt482",{id:"formSmash:j_idt482",widgetVar:"widget_formSmash_j_idt482",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt488",{id:"formSmash:j_idt488",widgetVar:"widget_formSmash_j_idt488",multiple:true});
Available from: 2014-03-21 Created: 2014-03-20 Last updated: 2017-12-05Bibliographically approved

Bootstrap percolation is a type of cellular automaton which has been used to model various physical phenomena, such as ferromagnetism. For each natural number r, the r-neighbour bootstrap process is an update rule for vertices of a graph in one of two states: 'infected' or 'healthy'. In consecutive rounds, each healthy vertex with at least r infected neighbours becomes itself infected. Percolation is said to occur if every vertex is eventually infected. Usually, the starting set of infected vertices is chosen at random, with all vertices initially infected independently with probability p. In that case, given a graph G and infection threshold r, a quantity of interest is the critical probability, p(c)(G, r), at which percolation becomes likely to occur. In this paper, we look at infinite trees and, answering a problem posed by Balogh, Peres and Pete, we show that for any b >= r and for any epsilon > 0 there exists a tree T with branching number br(T) = b and critical probability p(c)(T, r) < epsilon. However, this is false if we limit ourselves to the well-studied family of Galton-Watson trees. We show that for every r >= 2 there exists a constant c(r) > 0 such that if T is a Galton-Watson tree with branching number br(T) - b >= r then pc (T, r) > c(r)/b e(-b/r-1). We also show that this bound is sharp up to a factor of O (b) by giving an explicit family of Galton-Watson trees with critical probability bounded from above by C(r)e(-b/r-1) for some constant C-r > 0.

doi
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1204",{id:"formSmash:j_idt1204",widgetVar:"widget_formSmash_j_idt1204",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1257",{id:"formSmash:lower:j_idt1257",widgetVar:"widget_formSmash_lower_j_idt1257",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1258_j_idt1260",{id:"formSmash:lower:j_idt1258:j_idt1260",widgetVar:"widget_formSmash_lower_j_idt1258_j_idt1260",target:"formSmash:lower:j_idt1258:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});