Change search
ReferencesLink to record
Permanent link

Direct link
Retrospective Case Study of Software Faults: How Faults Could Have Been Detected
KTH, School of Computer Science and Communication (CSC).
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Retrospektiv fallstudie av mjukvarufel : Hur fel kunde ha upptäckts (Swedish)
Abstract [en]

This report presents a case study of software faults conducted on behalf of Scania. The aim of the thesis was to show where faults occur and how early they could have been detected. The approach chosen was to study and categorize previously reported software faults. The faults studied came from a project which relied mostly on high level testing. The categorization included both fault types and methods for detecting the faults as early as possible. The results showed that most faults studied could have been found earlier. This indicates that more effort put into testing at a lower level could have been beneficial.

Abstract [sv]

Den här rapporten innehåller en fallstudie av mjukvarufel utförd på begäran av Scania. Målet med examensarbetet var att visa var fel uppkommer och hur tidigt de kunde ha upptäckts. Arbetet utfördes genom analys och kategorisering av tidigare rapporterade mjukvarufel från ett projekt som litade mycket på manuella högnivåtester. Kategoriseringen inkluderade både olika feltyper samt metoder för att hitta felen så tidigt som möjligt. Resultaten visade att de flesta felen som studerades kunde ha hittats tidigare, vilket indikerar att en större insats kring lågnivåtester kunde ha varit fördelaktig.

Place, publisher, year, edition, pages
National Category
Computer Science
URN: urn:nbn:se:kth:diva-142447OAI: diva2:701997
Educational program
Master of Science in Engineering - Computer Science and Technology
Available from: 2014-03-11 Created: 2014-03-04 Last updated: 2014-03-11Bibliographically approved

Open Access in DiVA

fulltext(1221 kB)65 downloads
File information
File name FULLTEXT01.pdfFile size 1221 kBChecksum SHA-512
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 65 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 55 hits
ReferencesLink to record
Permanent link

Direct link