Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A real-time hand pose recognition system
KTH, School of Computer Science and Communication (CSC).
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

This thesis work aimed to reimplement and improve an existing system for hand pose recognition from monocular video data. The resulting system is light, multi-platform and easily extensible because of its modularity. It relies on treating the problem of hand pose estimation as a nearest neighbour look-up in a database of synthetically generated hand images. Its main characteristics are the use of HOGs (Histogram of Oriented Gradients) as features and employing temporal consistency for greater reliability and robustness.

The paper also makes a review of the current hand pose recognition research and gives arguments for our choices of implementation both in terms of design and actual technology used.

Abstract [sv]

Arbetet med den här uppsatsen ämnade till att bygga om och förbättra ett befintligt system för handposeestimering. Det framtagna systemet är lättviktigt och plattformsoberoende samt lätt att utöka tack vare dess modularitet. Problemet med att estimera handposer behandlas som ett närmaste-grannsökning i en databas av syntetiskt framtagna bilder på händer. Systemets huvudsakliga egenskaper är användandet av HOGs (Histogram of Oriented Gradient) samt temporal konsistens för ökad pålitlighet och stabilitet. Uppsatsen innehåller också en studie av nuvarande forskning inom området och presenterar argument för vår implementation avseende både vilken design och vilken teknik som använts.

Place, publisher, year, edition, pages
2013.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-142438OAI: oai:DiVA.org:kth-142438DiVA: diva2:700630
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2014-03-11 Created: 2014-03-04 Last updated: 2014-03-11Bibliographically approved

Open Access in DiVA

fulltext(2684 kB)257 downloads
File information
File name FULLTEXT01.pdfFile size 2684 kBChecksum SHA-512
f5e332b7179e8e987ce20a942b6c988ee596e6f62117eae74ccd1eb0c101b46c97a3da196d73f5e280b375b8cee609f709664f82f07f5de2369512dcb2190294
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 257 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 156 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf