Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Automatic web page categorizationusing text classication methods
KTH, School of Computer Science and Communication (CSC).
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Automatisk kategorisering av webbsidor medtextklassificeringsmetoder (Swedish)
Abstract [en]

Over the last few years, the Web has virtually exploded with an enormous amount of web pages of dierent types of content. With the current size of Web, it has become cumbersome to try and manually index and categorize all of its content. Evidently, there is a need for automatic web page categorization.

This study explores the use of automatic text classication methods for categorization of web pages. The results in this paper is shown to be comparable to results in other papers on automatic web page categorization, however not as good as results on pure text classication.

Abstract [sv]

Under de senaste åren så har Webben exploderat i storlek, med miljontals webbsidor av vitt skilda innehåll. Den enorma storleken av Webben gör att det blir ohanterligt att manuellt indexera och kategorisera allt detta innehåll. Uppenbarligen behövs det automatiska metoder för att kategorisera webbsidor.

Denna studie undersöker hur metoder för automatiskt textklassicering kan användas för kategorisering av hemsidor. De uppnådda resultatet i denna rapport är jämförbara med resultat i annan litteratur på samma område, men når ej upp till resultatet i studier på ren textklassicering.

Place, publisher, year, edition, pages
2013.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-142424OAI: oai:DiVA.org:kth-142424DiVA: diva2:700316
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2014-03-11 Created: 2014-03-04 Last updated: 2014-03-11Bibliographically approved

Open Access in DiVA

fulltext(911 kB)1007 downloads
File information
File name FULLTEXT01.pdfFile size 911 kBChecksum SHA-512
e8b5815edec25a2f79c9990908bc55ba4586c8de56f42db8b06d79f59380743a2745b6924535de9ec1c9321ec92ec27a3d4d7b468c55dc2819a03b17ddb29c98
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 1007 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 183 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf