Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
High Resolution Filter for Stable Spacecraft Attitude Estimation
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory.
2014 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

In this thesis a filter for attitude estimation using sensor fusion of a Star Tracker and a Gyroscope are designed and implemented for integration on the European Data Relay satellite, EDRS. The performance of three filters, Multiplicative Extended Kalman Filter, Unscented Kalman Filter and Particle filter, are evaluated in terms of attitude error, covariance convergence and change of attitude knowledge uncertainty. The filters show similar performance on all three measures and the comparison becomes a question of implementation and computational load. The Multiplicative Extended Kalman Filter is better in both criteria and are chosen for integration on board.

Abstract [sv]

I detta examensarbete formuleras och implementeras ett filter för attitydestimering ombord satelliten European Data Relay Satellite. Filtret som utvecklas skall estimera attityden och vinkelhastigheten hos en satellit genom att blanda signalerna från en stjærnkamera och ett gyro. Prestandan hos tre olika utvidgade Kalmanfilter undersöks i fråga om estimeringsfel, konvergens av tillståndskovariansen och förändring i attitydskunskaposäkerhet (change i attitude knowledge uncertainty, CAKU). Alla tre filter uppvisar snarlik prestanda och valet av filter för implementering ombord faller då på det filter som har den enklaste implementationen och den minsta beräkningstyngden, det multiplikativa utvidgade Kalmanfiltret (Multiplicative Extended Kalman Filter, MEKF).

Place, publisher, year, edition, pages
2014.
Series
TRITA-MAT-E, 2014:14
National Category
Mathematics
Identifiers
URN: urn:nbn:se:kth:diva-142358OAI: oai:DiVA.org:kth-142358DiVA: diva2:700163
Subject / course
Optimization and Systems Theory
Educational program
Master of Science - Mathematics
Supervisors
Examiners
Available from: 2014-03-03 Created: 2014-02-28 Last updated: 2014-03-03Bibliographically approved

Open Access in DiVA

fulltext(814 kB)332 downloads
File information
File name FULLTEXT01.pdfFile size 814 kBChecksum SHA-512
bda2c39fcf00a43d949cf3b2969a8d62dbdb250c379d1c429ef6204b32370279a19bb6dd1d0ea84b92198edc1b2b9a762144933fe6f4deb1bde79e1d5e6cd70f
Type fulltextMimetype application/pdf

By organisation
Optimization and Systems Theory
Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 332 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 198 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf