Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Real-time pixel based multiscaleanomaly detection inmultivariate images
KTH, School of Computer Science and Communication (CSC).
2013 (English)Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesisAlternative title
Pixelbaserad multiskalsanomalidetektion imultivariata bilder i realtid (Swedish)
Abstract [en]

This thesis presents a method using machine vision for surface quality control in an

industrial manufacturing process. The method is based on the anomaly detection due

to challenging, large variety and low occurrence rate of possible defects that have to

be identified. The control is performed on a surface of the inspected product using

multiple light sources for better illumination which provides more information about

the exterior conditions. The method itself handles the images taken from the different

light sources and computes a statistical model of the obtained multivariate image at

multiple scales in order to comprehend signaling the possible defects. For the final

classification, a pixel based probability map is used to pinpoint possible defects. The

method has been implemented in Matlab and tested on a sample set provided from a

Swedish furniture factory. Experimental results show interesting properties as well as

an evaluation of the proposed method.

Abstract [sv]

I det här examensarbetet presenteras en metod för optiskt ytavsyning i en industriell

tillverkningsprocess. Metoden baseras på anomalidetektion eftersom defekterna som

ska identifieras förekommer i stor variation och med låg frekvens. Avsyningen baseras

på belysning med flera ljuskällor för att erhålla mer information om ytan. Metoden

använder sig av bilderna tagna från de olika ljuskällor och skapar en statistisk modell av

den erhållna multivariata bilden i multipla skalor för att omfatta de olika defekterna.

För slutlig klassificering används en pixelbaserad sannolikhetskarta. Metoden är

implementerad i Matlab och testad på en provkollektion från en svensk möbelfabrik.

Resultaten visar intressanta egenskaper såväl som en utvärdering av den presenterade

metoden.

Place, publisher, year, edition, pages
2013.
National Category
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-142370OAI: oai:DiVA.org:kth-142370DiVA: diva2:699992
Educational program
Master of Science in Engineering - Computer Science and Technology
Supervisors
Examiners
Available from: 2014-03-12 Created: 2014-03-03 Last updated: 2014-03-12Bibliographically approved

Open Access in DiVA

fulltext(2058 kB)169 downloads
File information
File name FULLTEXT01.pdfFile size 2058 kBChecksum SHA-512
7f03a70b89618129f77eff3a00386a4c8b41b358e9ff427e31cfd97ed5f9ef80d9dd7bb11d92ad3465e9131270cb0c3cd7b312daa397030a65c75f14f5dc7409
Type fulltextMimetype application/pdf

By organisation
School of Computer Science and Communication (CSC)
Computer Science

Search outside of DiVA

GoogleGoogle Scholar
Total: 169 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf