Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Modelling of fatigue crack growth in Inconel 718 under hold time conditions - application to a flight spectrum
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
GKN Aerospace Engine Systems, Trollhättan, Sweden.
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
2014 (English)In: Advanced Materials Research, ISSN 1662-8985, Vol. 891-892, 759-764 p.Article in journal (Refereed) Published
Abstract [en]

Gas turbine operating cycles at high temperatures often consist of load reversals mixed with hold times; the latter occurring either as cruise for aero engines or at continuous power output for land based turbines, but also at low frequency loading conditions, e.g. slow “ramp up” of engine thrust. The hold time conditions cause the crack to grow by intergranular fracture due to material damage near the crack tip, thus rapidly increasing the crack growth rate. Since the damaged zone will affect the crack propagation rate due to cyclic loadings as well, the complete load history of a component therefore has to be considered. The crack propagation model presented in this paper is based on the damaged zone concept, and considers the history effect in the form of damaged zone build up during hold times, and subsequent destruction as the crack propagates onwards by rapidly applied load reversals. By incorporating crack closure for handling different R-values, an aero engine component spectrum is evaluated for a surface crack at 550 C. The result shows a good correlation to model simulation, despite the complexity of the load spectrum.

Place, publisher, year, edition, pages
Trans Tech Publications Inc., 2014. Vol. 891-892, 759-764 p.
Keyword [en]
Fatigue crack propagation, Inconel 718, Hold time effects, Crack growth modelling
National Category
Engineering and Technology
Identifiers
URN: urn:nbn:se:liu:diva-104812DOI: 10.4028/www.scientific.net/AMR.891-892.759ISI: 000337767700118OAI: oai:DiVA.org:liu-104812DiVA: diva2:699338
Available from: 2014-02-27 Created: 2014-02-27 Last updated: 2016-05-18Bibliographically approved
In thesis
1. Modelling of fatigue crack propagation in Inconel 718 under hold time conditions
Open this publication in new window or tab >>Modelling of fatigue crack propagation in Inconel 718 under hold time conditions
2014 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

In this thesis an investigation and modelling of the fatigue crack propagation in the nickel based superalloy Inconel 718, with a special emphasis on the effect of hold times, is presented. The modelling work has been concentrated on describing the hold time fatigue crack propagation by using the concept of a damaged zone in front of the crack tip, which is believed to have a lowered resistance against crack propagation.

The modelling framework is built on physically motivated parameters, which are all easy to calibrate through one specially designed test type. Later evaluation through many experimental tests has also shown that the model is capable, within reasonable scatter level to predict, the hold time fatigue crack propagation for many different temperatures and loading conditions. Further evaluation of a complex flight spectrum, with the incorporation of crack closure within the model, was also predicted with a satisfying result.

This thesis is divided into two parts. First, a background and a somewhat deeper discussion of the modelling of fatigue crack growth under hold time conditions is presented. The second part consists of ve appended papers, which describe the work completed so far in the project.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 48 p.
Series
Linköping Studies in Science and Technology. Thesis, ISSN 0280-7971 ; 1645
National Category
Engineering and Technology
Identifiers
urn:nbn:se:liu:diva-104814 (URN)10.3384/lic.diva-104814 (DOI)978-91-7519-403-5 (ISBN)
Presentation
2014-03-21, A34, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2014-02-27 Created: 2014-02-27 Last updated: 2014-03-14Bibliographically approved
2. High Temperature Fatigue Crack Growth in a Ni-based Superalloy: Modelling Including the Interaction of Dwell Times
Open this publication in new window or tab >>High Temperature Fatigue Crack Growth in a Ni-based Superalloy: Modelling Including the Interaction of Dwell Times
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Safe life of gas turbines is always of major concern for manufacturers in order to ensure passenger safety and stable continuous power output. An increasing amount of resources have been put into research and development to assure that all safety aspects are covered in the design of new turbines and to ensure that enough frequent service intervals are scheduled to avoid complications. Many of these issues require good knowledge of material properties and of how to use these in the design process. Some of these relate to fatigue which is of major concern in all parts of a development programme. However, while some fatigue problems have been extensively studied, some have not. One example is crack growth with influence of dwell times at elevated temperature in combination with cyclic loading. Such loading conditions have been shown to give a different cracking behaviour compared to rapid cyclic loading, increasing the growth rate significantly with respect to the number of load cycles. Improved models for predicting this behaviour is therefore of major interest for gas turbine manufacturers, and could substantially increase the reliability. As a result, more research is needed in order  solve these problems.

The work presented in this dissertation has focused on how to predict life under the above-mentioned circumstances. The materials used in high temperature gas turbine applications are often nickel-based superalloys, and in this work the most common one, Inconel 718, has been studied. Mechanical experiments have been performed under operation like conditions in order to receive material data for the subsequent modelling work. The modelling approach was chosen such that the underlying physics of the dwell time cracking have been incorporated on a phenomenological basis, creating a model which can be physically motivated as well as used for industrial applications. The main feature of the modelling work has been to track material damage which is received from dwell times, how this interacts with cyclic loading and how it affects the crack growth rate, thus creating a load history dependent model.

The outcome of this work has resulted in a model which is both easy to use and which has shown to give good correlation to available experimental data. Key components such as calibration for cheap and easy parameter determination, validation on complex engine spectra loadings, three dimensional crack growth, overload influences, material scatter, thermo-mechanical fatigue crack growth and the impact of high cycle fatigue loadings, are all covered in the presented work, both as experimental findings and as continuous development of the modelling concept.

The dissertation consists of two parts. In the first an introduction with the theory and background to crack growth with dwell times is given, while the second part consists of 10 papers.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2015. 51 p.
Series
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1681
National Category
Mechanical Engineering Applied Mechanics Materials Engineering
Identifiers
urn:nbn:se:liu:diva-121012 (URN)10.3384/diss.diva-121012 (DOI)978-91-7519-034-1 (ISBN)
Public defence
2015-09-11, C3, Hus C, Campus Valla, Linköping, 10:15 (English)
Opponent
Supervisors
Available from: 2015-09-02 Created: 2015-09-02 Last updated: 2015-09-02Bibliographically approved

Open Access in DiVA

fulltext(688 kB)250 downloads
File information
File name FULLTEXT01.pdfFile size 688 kBChecksum SHA-512
2f53d62ba5f029daa15088228095dcace8f2848ad98df6c81fcbb93876252ff5c60a08ecd05112a7357fdd7cfba98cc6116c3f6cb8258515134f3ba77190f95c
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Lundström, ErikSimonsson, KjellGustafsson, David
By organisation
Solid MechanicsThe Institute of Technology
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 250 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 308 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf