Change search
ReferencesLink to record
Permanent link

Direct link
Low-Cycle Fatigue Behaviour of a Ni-Based Single-Crystal Superalloy
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Engineering Materials. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
Linköping University, Department of Management and Engineering, Solid Mechanics. Linköping University, The Institute of Technology.
2014 (English)In: Advanced Materials Research, ISSN 1022-6680, E-ISSN 1662-8985, Vol. 891-892, 416-421 p.Article in journal (Refereed) Published
Abstract [en]

In this study, low-cycle fatigue (LCF) tests at 500 degrees C in the < 001 >, < 011 > and < 111 > directions have been performed for the Ni-based single-crystal superalloy MD2. All tests were carried out in strain control with R-is an element of = -1. The < 001 > direction has the lowest stiffness of the three directions and also shows the best fatigue properties in this study followed by the < 011 > and < 111 > directions, respectively. It is well recognised that Ni-based single-crystal superalloys show a tension/compression asymmetry in yield strength and this study shows that a tension/compression asymmetry is also present during LCF conditions. At mid-life, the < 001 > direction generally has a higher stress in tension than in compression, while the opposite is true for the < 011 > direction. For the < 111 > direction the asymmetry is found to be strain range dependent. The < 011 > and < 111 > directions show a cyclic hardening behaviour when comparing cyclic stress-strain curves with monotonic stress-strain curves. In addition, the < 011 > and < 111 > directions show a serrated yielding behaviour for a number of cycles while the yielding of the < 001 > direction is more stable.

Place, publisher, year, edition, pages
Trans Tech Publications Inc., 2014. Vol. 891-892, 416-421 p.
Keyword [en]
Ni-based single-crystal superalloy, LCF, tension/compression asymmetry, serrated yielding
National Category
Engineering and Technology Materials Engineering
URN: urn:nbn:se:liu:diva-104750DOI: 10.4028/ 000337767700064OAI: diva2:698770
Fatigue 2014, 11th International Fatigue Congress, Melbourne Cricket Ground, Melbourne, Australia, 2-7 March 2014.
Available from: 2014-02-25 Created: 2014-02-25 Last updated: 2014-10-27
In thesis
1. On Thermomechanical Fatigue of Single-Crystal Superalloys
Open this publication in new window or tab >>On Thermomechanical Fatigue of Single-Crystal Superalloys
2014 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Thanks to their excellent mechanical and chemical properties at temperatures up to 1000 °C, nickel-based superalloys are used in critical components in high-temperature applications such as gas turbines and aero engines. One of the most critical components in a gas turbine is the turbine blade, and to improve the creep and fatigue properties of this component, it is sometimes cast in single-crystal form rather than in the more conventional poly-crystalline form. Gas turbines are most commonly used for power generation and the turbine efficiency is highly dependent on the performance of the superalloys.

Today, many gas turbines are used as a complement for renewable energy sources, for example when the wind is not blowing or when the sun is not shining. This means that the turbine runs differently compared to earlier, when it ran for longer time periods with a lower number of start-ups and shut-downs. This new way of running the turbine, with an increased number of start-ups and shut-downs, results in new conditions for critical components, and one way to simulate these conditions is to perform thermomechanical fatigue (TMF) testing in the laboratory. During TMF, both mechanical strain and temperature are cycled at the same time, and one fatigue cycle corresponds to the conditions experienced by the turbine blade during one start-up and shutdown of the turbine engine.

In the work leading to this PhD thesis, TMF testing of single-crystal superalloys was first performed in the laboratory and this was then followed microstructure investigations to study the occurring deformation and damage mechanisms. Specimens with different crystallographic directions have been tested in order to investigate the anisotropic behaviour shown by these materials. Results show a significant orientation dependence during TMF, in which specimens with a low elastic stiffness perform better. However, it is also shown that specimens with a higher number of active slip planes perform better during TMF compared to specimens with less active slip systems. This is because a higher number of active slip systems results in a more widespread deformation and seems to be beneficial for the TMF life. Further, microscopy shows that the deformation during TMF is localised to several deformation bands and that different deformation and damage mechanisms prevail according to in which crystal orientation the material is loaded. Deformation twinning is shown to be a major deformation mechanism during TMF, and the interception of twins seems to trigger recrystallization. This work also studies the effects of alloying a single-crystal superalloy with Si or Re, and results show a significant Si-effect where the TMF life increases by a factor of 2 when Si is added to the alloy.

Finally, this research results in an increased knowledge of the mechanical response as well as a deeper understanding of the deformation and damage mechanisms that occur in single-crystal superalloys during TMF. It is believed that in the long-term, this can contribute to a more efficient and reliable power generation by gas turbines.

Place, publisher, year, edition, pages
Linköping: Linköping University Electronic Press, 2014. 83 p.
Linköping Studies in Science and Technology. Dissertations, ISSN 0345-7524 ; 1626
National Category
Materials Engineering Materials Chemistry
urn:nbn:se:liu:diva-111643 (URN)10.3384/diss.diva-111643 (DOI)978-91-7519-211-6 (print) (ISBN)
Public defence
2014-11-28, ACAS, Hus A, Campus Valla, Linköpings universitet, Linköping, 10:15 (English)
Available from: 2014-10-27 Created: 2014-10-27 Last updated: 2014-10-27Bibliographically approved

Open Access in DiVA

fulltext(2710 kB)235 downloads
File information
File name FULLTEXT01.pdfFile size 2710 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full text

Search in DiVA

By author/editor
Segersäll, MikaelMoverare, JohanLeidermark, DanielSimonsson, Kjell
By organisation
Engineering MaterialsThe Institute of TechnologySolid Mechanics
In the same journal
Advanced Materials Research
Engineering and TechnologyMaterials Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 235 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 285 hits
ReferencesLink to record
Permanent link

Direct link