References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt145",{id:"formSmash:upper:j_idt145",widgetVar:"widget_formSmash_upper_j_idt145",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt146_j_idt148",{id:"formSmash:upper:j_idt146:j_idt148",widgetVar:"widget_formSmash_upper_j_idt146_j_idt148",target:"formSmash:upper:j_idt146:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

Connectivity and embeddability of buildings and manifoldsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
PrimeFaces.cw("AccordionPanel","widget_formSmash_responsibleOrgs",{id:"formSmash:responsibleOrgs",widgetVar:"widget_formSmash_responsibleOrgs",multiple:true}); 2014 (English)Doctoral thesis, comprehensive summary (Other academic)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Stockholm: KTH Royal Institute of Technology, 2014. , viii, 23 p.
##### Series

TRITA-MAT-A, 2014:01
##### National Category

Mathematics
##### Identifiers

URN: urn:nbn:se:kth:diva-140324ISBN: 978-91-7501-992-5OAI: oai:DiVA.org:kth-140324DiVA: diva2:689576
##### Public defence

2014-02-13, Sal F3, Lindstedtsvägen 26, KTH, Stockholm, 13:15 (English)
##### Opponent

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt384",{id:"formSmash:j_idt384",widgetVar:"widget_formSmash_j_idt384",multiple:true});
##### Supervisors

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt390",{id:"formSmash:j_idt390",widgetVar:"widget_formSmash_j_idt390",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt396",{id:"formSmash:j_idt396",widgetVar:"widget_formSmash_j_idt396",multiple:true});
##### Funder

Knut and Alice Wallenberg Foundation
Available from: 2014-01-22 Created: 2014-01-21 Last updated: 2014-01-22Bibliographically approved
##### List of papers

The results presented in is thesis concern combinatorial and topological properties of objects closely related to geometry, but regarded in combinatorial terms. Papers A and C have in common that they are intended to study properties of buildings, whereas Papers A and B both are concerned with the connectivity of graphs of simplicial complexes.

In Paper A it is shown that graphs of thick, locally finite and 2-spherical buildings have the highest possible connectivity given their regularity and maximal degree. Lower bounds on the connectivity are given also for graphs of order complexes of geometric lattices.

In Paper B an interpolation between two classical results on the connectivity of graphs of combinatorial manifolds is developed. The classical results are by Barnette for general combinatorial manifolds and by Athanasiadis for flag combinatorial manifolds. An invariant *b* Δof a combinatorial manifold Δ is introduced and it is shown thatthe graph of is (*2d* − *b*Δ)-connected. The concept of banner triangulations of manifolds is defined. This is a generalization of flagtriangulations, preserving Athanasiadis’ connectivity bound.

In Paper C we study non-embeddability for order complexes of thick geometric lattices and some classes of finite buildings, all of which are *d*-dimensional order complexes of certain posets. They are shown to be hard to embed, which means that they cannot be embedded in Eucledian space of lower dimension than 2*d*+1, which is sufficient for all *d*-dimensional simplicial complexes. The notion of weakly independent atom configurations in general posets is introduced. Using properties of the van Kampen obstruction, it is shown that the existence of such a configuration makes the order complex of a poset hard to embed.

1. Connectivity of chamber graphs of buildings and related complexes$(function(){PrimeFaces.cw("OverlayPanel","overlay374282",{id:"formSmash:j_idt432:0:j_idt436",widgetVar:"overlay374282",target:"formSmash:j_idt432:0:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

2. On the connectivity of manifold graphs$(function(){PrimeFaces.cw("OverlayPanel","overlay689558",{id:"formSmash:j_idt432:1:j_idt436",widgetVar:"overlay689558",target:"formSmash:j_idt432:1:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

3. Non-embeddability of geometric lattices and buildings$(function(){PrimeFaces.cw("OverlayPanel","overlay689560",{id:"formSmash:j_idt432:2:j_idt436",widgetVar:"overlay689560",target:"formSmash:j_idt432:2:partsLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

References$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1123",{id:"formSmash:lower:j_idt1123",widgetVar:"widget_formSmash_lower_j_idt1123",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:referencesLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1124_j_idt1126",{id:"formSmash:lower:j_idt1124:j_idt1126",widgetVar:"widget_formSmash_lower_j_idt1124_j_idt1126",target:"formSmash:lower:j_idt1124:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});